Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp43445h | DOI Listing |
Chemistry
December 2024
University of Pardubice: Univerzita Pardubice, Institute of Organic Chemistry and Technology, CZECHIA.
Differently substituted pyrrole-azo‑benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV‑Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N‑methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen 361005, China.
Proton (H) NMR spectroscopy presents a powerful tool for biomass mixture studies by revealing the involved chemical compounds with identified ingredients and molecular structures. However, conventional H NMR generally suffers from spectral congestion when measuring biomass mixtures, particularly biomass carbohydrate samples, that contain various physically and chemically similar compounds. In this study, a targeted detection NMR approach, DREAMTIME, is exploited for studying biomass carbohydrate mixtures by spectroscopically targeting the desired compounds in separate 1D NMR spectra.
View Article and Find Full Text PDFBMC Psychiatry
December 2024
Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
Background: The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD.
Methods: A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants.
Food Chem
December 2024
Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
In this study, an integrated approach combining UHPLC-HRMS, H NMR spectroscopy, and sensory analysis unveiled the unique lipid fingerprint of long-ripened Protected Designation of Origin (PDO) Coppa Piacentina. Lipidomic profiling revealed significant alterations in lipid classes, including triacylglycerols, sphingolipids, and their oxidation products, which likely contribute to the distinctive flavor, texture, and nutritional properties of this traditional Italian product. UHPLC-HRMS analysis identified various lipid species, highlighting dynamic changes occurring throughout the 240-day ripening process.
View Article and Find Full Text PDFTomography
December 2024
Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!