Apoptosis induction by OTA and TNF-α in cultured primary rat hepatocytes and prevention by silibinin.

Toxins (Basel)

Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubert Street 81, Giessen D-35392, Germany.

Published: November 2012

In cultures of primary rat hepatocytes, apoptosis occurred after application of 20 ng/mL tumor necrosis factor alpha (TNF-α). However, this was only in the presence of 200 ng/mL of the transcriptional inhibitor actinomycin D (ActD). This toxic effect was completely prevented in the presence of 25 µg/mL soluble TNF-α receptor I (sTNFR I) in the supernatant of hepatocyte cell cultures. Apoptosis also occurred after application of 12.5 µmol/L ochratoxin A (OTA). However, that was not prevented by up to 500 µg/mL sTNFR I, indicating that TNF-α/TNFR I is not involved in OTA mediated apoptosis in hepatocytes. The antioxidative flavanolignan silibinin in doses from 130 to 260 µmol/L prevented chromatin condensation, caspase-3 activation, and apoptotic DNA fragmentation that were induced by OTA, by 10 mmol/L hydrogen peroxide (H(2)O(2)) and by ultraviolet (UV-C) light (50 mJ/cm2), respectively. To achieve protection by silibinin, the drug was applied to the cell cultures for 2 h in advance. OTA stimulated lipid peroxidation on cultured immortalized rat liver HPCT cells, as was revealed by malondialdehyde (MDA) production. Lipid peroxidation occurred further by H(2)O(2) and ActD/TNF-α incubation. These reactions were also suppressed by silibinin pretreatment. We conclude that the anti-apoptotic activity of silibinin against OTA, H(2)O(2) and ActD/ TNF-α is caused in vitro by the antioxidative effects of the flavanolignan. Furthermore, cytotoxicity of the pro-apoptotic toxins was revealed by MTT-test. When applied separately, ActD and TNF-α showed no cytotoxic effects after 24 h, but were cytotoxic if applied in combination. The used concentrations of OTA, H(2)O(2) and the dose of UV-C caused a substantial decrease in viability within 36 h that was prevented mostly by silibinin. We conclude that silibinin is a potent protective compound against apoptosis and cytotoxicity caused by OTA and the investigated compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509701PMC
http://dx.doi.org/10.3390/toxins4111139DOI Listing

Publication Analysis

Top Keywords

ota
8
primary rat
8
rat hepatocytes
8
apoptosis occurred
8
occurred application
8
cell cultures
8
lipid peroxidation
8
ota h2o2
8
silibinin
7
apoptosis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!