High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91.

Bioresour Technol

Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7.

Published: January 2013

Photofermentative hydrogen (H(2)) production from glucose with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup(-)) was examined using a photobioreactor operated in continuous mode. Stable and high hydrogen yields on glucose were obtained at three different retention times (HRTs; 24, 48 and 72 h). The H(2) production rates, varying between 0.57 and 0.81 mmol/h, and optical densities (OD(600 nm)) were similar for the different HRTs examined. However, the rate of glucose consumption was influenced by HRT being greater at HRT 24h than HRTs 48 and 72 h. The highest hydrogen yield, 9.0 ± 1.2 mol H(2)/mol glucose, was obtained at 48 h HRT. These results show that single stage photofermentative hydrogen production from glucose using photobioreactors operated in continuous culture mode gives high, nearly stoichiometric yields of hydrogen from glucose, and thus is considerably more promising than either two stage photofermentation or co-culture approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.10.091DOI Listing

Publication Analysis

Top Keywords

single stage
8
rhodobacter capsulatus
8
capsulatus jp91
8
photofermentative hydrogen
8
hydrogen production
8
production glucose
8
operated continuous
8
glucose
7
hydrogen
6
high yield
4

Similar Publications

Sarcopenia as a Prognostic Factor and Multimodal Interventions in Breast Cancer.

Int J Gen Med

December 2024

Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.

Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.

View Article and Find Full Text PDF

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

Background: Patients with end-stage kidney disease (ESKD) have high rates of gastrointestinal bleeding due to several risk factors including platelet dysfunction, comorbid illness, and use of antiplatelet medications. Proton pump inhibitors (PPIs) reduce gastrointestinal bleeding and are recommended for high-risk patients such as those prescribed dual antiplatelet therapy (DAPT). Whether inappropriate duration of DAPT therapy and/or lack of appropriate PPI use contribute to the known elevated risk of gastrointestinal bleeding in hemodialysis patients is not known.

View Article and Find Full Text PDF

Prostate cancer (PC) progresses from benign epithelium through pre-malignant lesions, localized tumors, metastatic dissemination, and castration-resistant stages, with some cases exhibiting phenotype plasticity under therapeutic pressure. However, high-resolution insights into how cell phenotypes evolve across successive stages of PC remain limited. Here, we present the Prostate Cancer Cell Atlas (PCCAT) by integrating ∼710,000 single cells from 197 human samples covering a spectrum of tumor stages.

View Article and Find Full Text PDF

Demyelination, or the loss of myelin in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and occurs in various forms of CNS injury and neurodegenerative diseases. The regeneration of myelin, or remyelination, occurs spontaneously following demyelination. The lysophosphatidylcholine (LPC)-induced focal demyelination model enables investigations into the mechanisms of remyelination, providing insight into the molecular basis underlying an evolving remyelinating microenvironment over a tractable time course.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!