Neuroimaging consistently reveals smaller hippocampal volume in recurrent or chronic major depressive disorder (MDD). The underlying cellular correlates of the smaller volume are not clearly known. Postmortem tissues from 17 pairs of depressed and control subjects were obtained at autopsy, and informant-based retrospective psychiatric assessment was performed. Formalin-fixed left temporal lobes were sectioned (40 μm), stained for Nissl substance, and every 60th section selected throughout the entire hippocampus. Total volume of the hippocampal formation was calculated, and total numbers of pyramidal neurons (in hippocampal fields CA1, CA2/3, hilus), dentate gyrus (DG) granule cells, and glial cells were estimated stereologically. While hippocampal volume in all MDD subjects was not significantly smaller versus control subjects, in recurrent/chronic MDD, total volume decreased with duration of depressive illness (r = -0.696, p < 0.026). There was no significant difference between MDD and controls in total number or density of pyramidal neurons/granule cells or glial cells in CA1, CA2/3, hilus, or DG. However, CA1 pyramidal neuron density increased with duration of illness in recurrent/chronic MDD (r = 0.840, p < 0.002). Granule cell (r = 0.971, p < 0.002) and glial cell numbers (r = 0.980, p < 0.001) increased with age in those taking antidepressant medication (n = 6). Increasing DG granule cell and glial cell numbers with age in antidepressant-treated subjects may reflect proliferative effects of antidepressant medications. Decreasing total volume and increasing CA1 pyramidal neuron density with duration of illness in recurrent/chronic MDD lends support to the neuropil hypothesis of MDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757567 | PMC |
http://dx.doi.org/10.1016/j.jpsychires.2012.10.020 | DOI Listing |
Environ Res
January 2025
Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal (Québec), H3C 3P8, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, chemin de la Côte-Sainte-Catherine, Montréal (Québec), H3T 1C5, Canada. Electronic address:
Exposure to lead, mercury, and polychlorinated biphenyls (PCBs) has been causally linked to spatial memory deficits and hippocampal changes in animal models. The Inuit community in Northern Canada is exposed to higher concentrations of these contaminants compared to the general population. This study aimed to 1) investigate associations between prenatal and current contaminant exposures and medial temporal brain volumes in Inuit late adolescents; 2) examine the relationship between these brain structures and spatial memory; and 3) assess the mediating role of brain structures in the association between contaminant exposure and spatial memory.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.
Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.
Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.
Biol Psychiatry Cogn Neurosci Neuroimaging
January 2025
Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China. Electronic address:
Background: Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. This study explores structural and functional alterations of hippocampal subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure.
View Article and Find Full Text PDFExp Physiol
January 2025
Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.
View Article and Find Full Text PDFIndian J Psychiatry
November 2024
Department of Physiotherapy, School of Medical and Allied Health Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
Background: Schizophrenia is considered to be a condition that usually manifests at any age but commonly seen in young people and is associated with a genetic propensity in brain development.
Aim: The study explores the impact of aerobic training on brain architecture, hippocampal volume, cardiorespiratory parameters, and quality of life in young individuals with schizophrenia. The investigation focuses on the correlation between genetic predisposition, hippocampal atrophy, and diminished cardiorespiratory fitness, aiming to discern potential benefits of aerobic exercise on both physical and mental health outcomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!