Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mesoporous SiO(2), Al(2)O(3), TiO(2), Nb(2)O(5), and Ta(2)O(5) were synthesized through a soft-templating approach by a self-assembled framework of Pluronic P123 and utilized for the preparation of 3-dimensional catalysts as supports. Colloidal Pt nanoparticles with an average diameter of 1.9 nm were incorporated into the mesoporous oxides by sonication-induced capillary inclusion. The Pt nanoparticles supported on mesoporous oxides were evaluated in the hydrogenation reaction of furfural (70 torr furfural and 700 torr H(2) with a balance of He) to study the effect of catalyst supports on selectivity. In the temperature ranges of 170-240°C, the major products of this reaction were furan, furfuryl alcohol, and 2-methyl furan through a main reaction pathway of either decarbonylation or carbonyl group hydrogenation. While Pt nanoparticles with the size ranges of 1.5-7.1 exhibited strong structure-dependent selectivity, various supports loaded with only 1.9 nm Pt nanoparticles produced dominantly furan as a major product. Compared to the inert silica support, TiO(2) and Nb(2)O(5) facilitated an increase in the production of furfuryl alcohol via carbonyl group hydrogenation as a result of a charge transfer interaction between the Pt and the acidic surface of the oxides. The same trend was confirmed on 2-dimensional type catalysts, in which thin films of SiO(2), Al(2)O(3), TiO(2), Nb(2)O(5), and ZrO(2) were prepared as supports. When furfural hydrogenation was conducted (1 torr furfural, 100 torr H(2), and 659 torr He) over Pt nanoparticle monolayers deposited on oxide substrates, only TiO(2) was shown to increase the production of furfuryl alcohol, while other oxides produced furan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2012.10.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!