The major functions required for load-bearing orthopaedic implants are load-bearing and mechanical or biological fixation with the surrounding bone. Porous materials with appropriate mechanical properties and adequate pore structure for fixation are promising candidates for load-bearing implant material. In previous work, the authors developed a novel titanium (Ti) foam sheet 1-2mm thick by an original slurry foaming method. In the present work, novel Ti foam is developed with mechanical properties compatible with cortical bone and biological fixation capabilities by layer-by-layer stacking of different foam sheets with volumetric porosities of 80% and 17%. The resulting multilayer Ti foam exhibited a Young's modulus of 11-12GPa and yield strength of 150-240MPa in compression tests. In vitro cell culture on the sample revealed good cell penetration in the higher-porosity foam (80% volumetric porosity), which reached 1.2mm for 21 days of incubation. Cell penetration into the high-porosity layers of a multilayer sample was good and not influenced by the lower-porosity layers. Calcification was also observed in the high-porosity foam, suggesting that this Ti foam does not inhibit bone formation. Contradictory requirements for high volumetric porosity and high strength were attained by role-sharing between the foam sheets of different porosities. The unique characteristics of the present multilayer Ti foam make them attractive for application in the field of orthopaedics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2012.11.018 | DOI Listing |
J Wound Ostomy Continence Nurs
January 2025
Stephanie Constable, BSN, RN, CWOCN, Wound Care and Ostomy, United Hospital Center, Bridgeport, West Virginia.
Purpose: Global pressure injury (PI) statistics reveal that hospital-acquired pressure injuries (HAPIs) remain a substantial burden, with over 1 in 10 hospitalized adults being affected. The purpose of this analysis is to describe how consistent collection, analysis, and use of data allow hospitals to validate their clinical and economic outcomes and to adjust PI prevention strategies.
Participants And Setting: HAPI incidence data for acute care patients at a 280-bed regional community hospital in the Mid-Atlantic region of the United States (West Virginia) were collected from January 2012 to July 2023.
Materials (Basel)
December 2024
Faculty of Civil Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
This paper concerns research into the use of 3D-printed gyroid structures as a modern thermal insulation material in construction. The study focuses on the analysis of open-cell gyroid structures and their effectiveness in insulating external building envelopes. Gyroid composite samples produced using DLP 3D-printing technology were tested to determine key parameters such as thermal conductivity (λ), thermal resistance (R) and heat transfer coefficient (U) according to ISO 9869-1:2014.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
Worldwide, populations face issues related to water and energy consumption. Water scarcity has intensified globally, particularly in arid and semiarid regions. Projections indicate that by 2030, global water demand will rise by 50%, leading to critical shortages, further intensified by the impacts of climate change.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
This study introduces a flexible and scalable charge-trapping intermediate layer of conjugated polymeric film comprising [PANI/PEDOT:PSS] between the [PVA/PDDA] triboelectric layer and graphene-based [PVA/GNP-PSS] electrode using the layer-by-layer (LbL) assembly method. By varying the deposition layers, the optimal coating layout was identified as 2 and 8 bilayers of intermediate and triboelectric layers, respectively. The triboelectric nanogenerator (TENG) fabricated with this optimal configuration achieved peak output voltage and current of 180 V and 9 μA, respectively, at 3 Hz and 5 N against PDMS.
View Article and Find Full Text PDFTalanta
April 2025
Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China. Electronic address:
The key to accurately identifying trace heavy metal elements is to achieve efficient sample introduction while shielding the interference of matrix components. Taking the electrolytic hydride generation (EHG) technology as an example, this paper explored the effects of cathode materials and structural factors on the electrosynthesis of hydrogen selenide (HSe), particularly on suppressing interference from coexisting components. Systematic electrochemical and spectroscopic tests show that the nickel-based electrode can promote the generation of HSe, while the multi-layer foam structure with large specific surface area, rich pores and weak gas evolution effect improves the yield and stability of electrosynthesis reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!