The aim of this study was to investigate the pharmacokinetic mechanism of interaction between JBP485 and 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Rats were injected intraperitoneally with 0.64 nmol/kg/day 1,25(OH)(2)D(3) in 1 ml/kg corn oil for 5 days. The plasma and urine concentrations of JBP485 after intravenous administration and the uptake of JBP485 in kidney slices in vitro were determined by liquid chromatography/tandem mass spectrometry. Quantitative polymerase chain reaction, western blotting, immunohistochemical analysis and immunofluorescence were used to determine the changes in the expression of organic anion transporter (Oat)1 and Oat3 in rat kidney in response to 1,25(OH)(2)D(3) treatment. The plasma concentrations and AUCs of JBP485 were significantly increased, while the renal clearance of JBP485 and uptake of JBP485 in kidney slices were significantly decreased after 1,25(OH)(2)D(3) treatment. These results confirmed that 1,25(OH)(2)D(3) inhibited renal excretion of JBP485. Moreover, 1,25(OH)(2)D(3) decreased expression of Oat1 and Oat3 in rat kidney. Our results are novel in demonstrating an interaction between JBP485 and 1,25(OH)(2)D(3) when they are co-administered. The mechanism of interaction between JBP485 and 1,25(OH)(2)D(3) could be explained at least in part by inhibitory effect of 1,25(OH)(2)D(3) on expression of Oats in rat kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2012.11.008 | DOI Listing |
Front Pharmacol
June 2022
Institute of Integrative Medicine, Dalian Medical University, Dalian, China.
Imipenem (IMP) possesses a broad spectrum of antibacterial activity; however, nephrotoxicity limits its clinical application in patients with renal insufficiency. In our previous studies, a dipeptide, JBP485, a dipeptide with the chemical structure cyclo-trans-4-L-hydroxyprolyl-L-serine, was found to attenuate drug-induced kidney injury. The current study aimed to explore whether JBP485 could relieve IMP-induced kidney injury and clarify the potential molecular pharmacokinetic mechanism.
View Article and Find Full Text PDFDrug Metab Dispos
June 2014
Department of Clinical Pharmacology, College of Pharmacy (Cho.W., Cha.W., Q.L., Q.M., J.C., H.S., J.P., X.M., K.L.), and China Provincial Key Laboratory for Pharmacokinetics and Transport (Cha.W., Q.L., Q.M., J.C., H.S., J.P., X.M., X.H., K.L.), Dalian Medical University, Dalian, China.
This study aimed to evaluate the transporter-mediated renal excretion mechanism for cilostazol and to characterize the mechanism of drug-drug interaction (DDI) between cilostazol and aspirin or probenecid. Concentrations of cilostazol and its metabolites OPC-13015 [6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-2(1H)-quinolinone] and OPC-13213 [3,4-dihydro-6-[4-[1-(trans-4-hydroxycyclohexyl)-1H-tetrazol-5-yl]butoxy]-2-(1H)-quinolinone] in rat biologic or cell samples were measured by liquid chromatography-tandem mass spectrometry. Coadministration with probenecid, benzylpenicillin, or aspirin decreased the cumulative urinary excretion of cilostazol and renal clearance.
View Article and Find Full Text PDFEur J Pharm Sci
March 2013
Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China.
Entecavir and JBP485 (a dipeptide) exhibit the antihepatitis activities and it is possible for the two drugs to be coadministered in the treatment of hepatitis. We aimed to elucidate whether entecavir was a substrate of OAT1, OAT3, OCT, and PEPT1 and to investigate the targets of drug-drug interactions between entecavir and JBP485. Plasma and urine concentrations of entecavir following intravenous and oral administration in vivo, uptake of entecavir in kidney slices and transfected cells in vitro, were determined by LC-MS/MS.
View Article and Find Full Text PDFEur J Pharm Sci
January 2013
Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
The aim of this study was to investigate the pharmacokinetic mechanism of interaction between JBP485 and 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Rats were injected intraperitoneally with 0.64 nmol/kg/day 1,25(OH)(2)D(3) in 1 ml/kg corn oil for 5 days.
View Article and Find Full Text PDFEur J Pharm Sci
September 2012
Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China.
The purpose is to investigate whether the targets of drug-drug interactions (DDIs) between JBP485 and acyclovir are OAT1 and OAT3 in kidney. Plasma concentration and accumulative urinary excretion of acyclovir in vivo, uptake of acyclovir in kidney slices and uptake of acyclovir in human (h) OAT1/ hOAT3-human embryonic kidney (HEK) 293 cells in vitro were performed to examine the effect of JBP485 on urinary excretion of acyclovir. The plasma concentration of acyclovir was increased markedly and accumulative urinary excretion and renal clearance of acyclovir were decreased significantly after intravenous administration of acyclovir in combination with JBP485.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!