The study investigated the protective effects of carnosic acid (CA), the principal constituent of rosemary, on lipopolysaccharide (LPS)-induced oxidative/nitrosative stress and hepatotoxicity in rats. CA was administered orally to rats at doses of 15, 30 and 60 mg/kg body weight before LPS challenge (single intraperitoneal injection, 1 mg/kg body weight). The results revealed that CA inhibited LPS-induced liver damage and disorder of lipid metabolism, which were mainly evidenced by decreased serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. CA also inhibited LPS-induced oxidative/nitrosative stress by decreasing lipid peroxidation, protein carbonylation, and serum levels of nitric oxide. Histopathological examination demonstrated that CA could improve pathological abnormalities and reduce the immigration of inflammatory cells in liver tissues with LPS challenge. Concurrently, CA potently inhibited the LPS-induced rise in serum levels of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6. CA supplementation markedly enhanced the body's cellular antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and glutathione in serum and liver after the LPS challenge. In conclusion, the present study suggests that CA successfully and dose dependently attenuates LPS-induced hepatotoxicity possibly by preventing cytotoxic effects of oxygen free radicals, NO and cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2012.11.001DOI Listing

Publication Analysis

Top Keywords

lps challenge
12
inhibited lps-induced
12
serum levels
12
carnosic acid
8
cellular antioxidant
8
antioxidant defense
8
defense system
8
lps-induced oxidative/nitrosative
8
oxidative/nitrosative stress
8
mg/kg body
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!