A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling and analysing the dynamics of disease progression from cross-sectional studies. | LitMetric

Modelling and analysing the dynamics of disease progression from cross-sectional studies.

J Biomed Inform

School of Information Systems, Computing, Brunel University, Uxbridge, West London, UK.

Published: April 2013

Clinical trials are typically conducted over a population within a defined time period in order to illuminate certain characteristics of a health issue or disease process. These cross-sectional studies give us a 'snapshot' of this disease process over a large number of people but do not allow us to model the temporal nature of disease, thereby allowing for modelling detailed prognostic predictions. The aim of this paper is to explore an extension of the temporal bootstrap to identify intermediate stages in a disease process and sub-categories of the disease exhibiting subtly different symptoms. Our approach is compared to a strawman method and investigated in its ability to explain the dynamics of progression on biomedical data from three diseases: Glaucoma, Breast Cancer and Parkinson's disease. We focus on creating reliable time-series models from large amounts of historical cross-sectional data using the temporal bootstrap technique. Two issues are explored: how to build time-series models from cross-sectional data, and how to automatically identify different disease states along these trajectories, as well as the transitions between them. Our approach of relabeling trajectories allows us to explore the temporal nature of how diseases progress even when time-series data is not available (if the cross-sectional study is large enough). We intend to expand this research to deal with multiple studies where we can combine both cross-sectional and longitudinal datasets and to focus on the junctions of the trajectories as key stages in the progression of disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2012.11.003DOI Listing

Publication Analysis

Top Keywords

disease process
12
disease
9
cross-sectional studies
8
temporal nature
8
temporal bootstrap
8
time-series models
8
cross-sectional data
8
cross-sectional
6
modelling analysing
4
analysing dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!