The crystal structure of three head-to-head dimers (having two cholic acid or deoxycholic acid units) linked at carbon atoms C3 by aromatic or alkyl bridges is studied. An internal coordinates system is necessary for describing the relative orientation in the space of the two bile acid residues. Five angles (three torsion and two common ones) are necessary for defining the relative position of both steroid residues in space. Carbon atoms C3 (which always carries a α-hydroxy group in natural bile acids), and C10 and C13 (which always carry β-methyl groups) of each steroid residue are suitable for this purpose. Furthermore, the distance between each C3 carbon atoms of both steroid residues will allow one to locate the steroids in space. The three dimers selected provide a large range of values for these angles. The packing, hydrogen bond network, and location of guest in the three crystals are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2012.11.010 | DOI Listing |
Molecules
December 2024
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia.
In this study, comparative analysis of calculated and experimental C NMR shifts for a wide range of model platinum complexes showed that, on the whole, the theory reproduces the experimental data well. The chemical shifts of carbon atoms directly bonded to Pt can be calculated well only within the framework of the fully relativistic matrix Dirac-Kohn-Sham (mDKS) level ( = 0.9973, = 3.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemical and Materials Engineering, Lyuliang University, Lishi 033001, China.
We studied the boron-based composite cluster BAl doped with Al atoms. The global minimum structure of the BAl cluster is a three-layer structure, consisting of three parts: an Al unit, a B ring and an isolated Al atom. Charge calculations analysis shows that the cluster can be expressed as [Al][B][Al], has 6π/6σ double aromaticity and follows the (4+2) Hückel rule.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
By combining molecular dynamics (MD) simulations and density functional theory (DFT), the influence of dye structure on the optical modulation properties of negative-mode guest-host liquid crystal (GHLC) systems was systematically investigated. Firstly, the reliability of the simulation method was validated by comparing the performance parameters of the GHLC system obtained from simulations with those from experimental results. Subsequently, a series of guest dye molecules, along with their mixtures with negative dielectric anisotropy mesogens, were designed and analyzed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1430 Ås, Norway.
The interaction of Ni with (6,0) and (8,0) zigzag carbon nanotube exterior surfaces containing two vacancies was studied using density functional theory (DFT). A two-vacancy defect was analysed in order to anchor Ni, and the pristine nanotube was also considered as a reference for each chirality. The adsorbed Ni stability and the nanotube's geometry and electronic structure were analysed before and after the adsorption.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
Developing highly efficient and cost-competitive electrocatalysts for the hydrogen evolution reaction (HER), which can be applied to hydrogen production by water splitting, is of great significance in the future of the zero-carbon economy. Here, by means of first-principles calculations, we have scrutinized the HER catalytic capacity of single-atom catalysts (SACs) by embedding transition-metal atoms in the C and Mo vacancies of a tetragonal MoC slab, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni and Cu. All the MoC-based SACs exhibit excellent electrical conductivity, which is favorable to charge transfer during HER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!