Advantages of core-shell particle columns in Sequential Injection Chromatography for determination of phenolic acids.

Talanta

Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.

Published: January 2013

Currently, for Sequential Injection Chromatography (SIC), only reversed phase C18 columns have been used for chromatographic separations. This article presents the first use of three different stationary phases: three core-shell particle-packed reversed phase columns in flow systems. The aim of this work was to extend the chromatographic capabilities of the SIC system. Despite the particle-packed columns reaching system pressures of ≤ 610 PSI, their conditions matched those of a commercially produced and optimised SIC system (SIChrom™ (FIAlab(®), USA)) with a 8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with a 4 mL reservoir and maximum system pressure of ≤ 1000 PSI. The selectivity of each of the tested columns, Ascentis(®) Express RP-Amide, Ascentis(®) Express Phenyl-Hexyl and Ascentis(®) Express C18 (30 mm × 4.6mm, core-shell particle size 2.7 μm), was compared by their ability to separate seven phenolic acids that are secondary metabolite substances widely distributed in plants. The separations of all of the components were performed by isocratic elution using binary mobile phases composed of acetonitrile and 0.065% phosphoric acid at pH 2.4 (a specific ratio was used for each column) at a flow-rate of 0.60 mL/min. The volume of the mobile phase was 3.8 mL for each separation. The injection volume of the sample was 10 μL for each separation. The UV detection wavelengths were set to 250, 280 and 325 nm. The RP-Amide column provided the highest chromatographic resolution and allowed for complete baseline separation of protocatechuic, syringic, vanillic, ferulic, sinapinic, p-coumaric and o-coumaric acids. The Phenyl-Hexyl and C18 columns were unable to completely separate the tested mixture, syringic and vanillic acid and ferulic and sinapinic acids could not be separated from one another. The analytical parameters were a LOD of 0.3 mg L(-1), a LOQ of 1.0 mg L(-1), a calibration range of 1.0-50.0 (100.0) mg L(-1) (r>0.997) and a system precision of 10 mg L(-1) with a RSD ≤ 1.65%. The high performance of the chromatography process with the RP-Amide column under optimised conditions was highlighted and well documented (HETP values ≤ 10 μm, peak symmetry ≤ 1.33, resolution ≥ 1.87 and time for one analysis <8.0 min). The results of these experiments confirmed the benefits of extending chromatographic selectivity using core-shell particle column technology in a SIC manifold.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2012.10.036DOI Listing

Publication Analysis

Top Keywords

ascentis® express
12
core-shell particle
8
sequential injection
8
injection chromatography
8
phenolic acids
8
reversed phase
8
c18 columns
8
sic system
8
rp-amide column
8
syringic vanillic
8

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis.

Phytother Res

January 2025

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.

Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.

View Article and Find Full Text PDF

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!