Astrocytes are critical for the antioxidant support of neurons. Recently, we demonstrated that low level hydrogen peroxide (H(2) O(2) ) facilitates astrocyte-dependent neuroprotection independent of the antioxidant transcription factor Nrf2, leaving the identity of the endogenous astrocytic Nrf2 activator to question. In this study, we show that an endogenous electrophile, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), non-cell autonomously protects neurons from death induced by depletion of the major antioxidant glutathione. Nrf2 knockdown in astrocytes abrogated 15d-PGJ2's neuroprotective effect as well as 15d-PGJ2 facilitated Nrf2-target gene induction. In contrast, knockdown of the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ), a well-characterized 15d-PGJ2 target, did not alter 15d-PGJ2 non-cell autonomous neuroprotection. In addition, several PPARγ agonists of the thiazolidinedione (TZD) family failed to induce neuroprotection. Unexpectedly, however, the TZD troglitazone (which contains a chromanol moiety found on vitamin E) induced astrocyte-mediated neuroprotection, an effect which was mimicked by the vitamin E analogs alpha-tocopherol or alpha-tocotrienol. Our findings lead to two important conclusions: (i) 15d-PGJ2 induces astrocyte-mediated neuroprotection via an Nrf2 but not PPARγ mediated pathway, suggesting that 15d-PGJ2 is a candidate endogenous modulator of Nrf2 protective pathways in astrocytes; (ii) selective astrocyte treatment with analogs or compounds containing the chromanol moiety of vitamin E facilitates non-cell autonomous neuroprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.12107DOI Listing

Publication Analysis

Top Keywords

15-deoxy-Δ1214-prostaglandin 15d-pgj2
8
protects neurons
8
transcription factor
8
15d-pgj2 non-cell
8
non-cell autonomous
8
autonomous neuroprotection
8
chromanol moiety
8
moiety vitamin
8
astrocyte-mediated neuroprotection
8
nrf2
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!