Mental and neurological disorders are increasingly prevalent and constitute a major societal and economic burden worldwide. Many of these diseases and disorders are characterized by progressive deterioration over time, that ultimately results in identifiable symptoms that in turn dictate therapy. Disease-specific symptoms, however, often occur late in the degenerative process. A better understanding of presymptomatic events could allow for the development of new diagnostics and earlier interventions that could slow or stop the disease process. Such studies of progressive neurodegeneration require the use of animal models that are characterized by delayed or slowly developing disease phenotype(s). This brief review describes several examples of such animal models that have recently been developed with relevance to various neurological diseases and disorders, and delineates the potential of such models to aid in predictive diagnosis, early intervention and disease prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405326 | PMC |
http://dx.doi.org/10.1007/s13167-010-0019-0 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
Background: Triggering receptor expressed on myeloid cells 2 (TREM2), a surface receptor predominantly expressed on myeloid cells, is a major hub gene in pathology-induced immune signaling. However, its function in hepatocellular carcinoma (HCC) remains controversial. This study aimed to evaluate the role of TREM2 in the tumor microenvironment in the context of HCC progression.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Biology, University of Turku, Turku, Finland.
Introduction: Doxorubicin is a chemotherapeutic drug used to treat various cancers. Exercise training (ET) can attenuate some cardiotoxic effects of doxorubicin (DOX) in tumor-free animals. However, the ET effects on cardiac function and glucose metabolism in DOX-treated breast cancer models remain unclear.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
The First Affiliated Hospital, Gynecology&Obstetrics and Reproductive Medical Center, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
Objective: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrinopathy in reproductive-aged women, contributing to 75% of infertility cases due to ovulatory dysfunction. The condition poses significant health and psychological challenges, making the study of its pathogenesis and treatment a research priority. This study investigates the effects of Mogroside V (MV) on PCOS, focusing on its anti-inflammatory and anti-insulin resistance properties.
View Article and Find Full Text PDFBMC Med
January 2025
Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
Background: Current research underscores the need to better understand the pathogenic mechanisms and treatment strategies for idiopathic pulmonary fibrosis (IPF). This study aimed to identify key targets involved in the progression of IPF.
Methods: We employed Mendelian randomization (MR) with three genome-wide association studies and four quantitative trait loci datasets to identify key driver genes for IPF.
BMC Pulm Med
January 2025
İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye.
Purpose: The inflammatory response in animal models of chronic obstructive pulmonary disease (COPD) is activated by the NLR-family-pyrin-domain-containing-3 (NLRP3) inflammasome pathway, which is also known to play a role in obesity-related inflammation. The NLRP3/caspase-1/interleukin (IL)-1β pathway might be involved in the progression of COPD with increasing body mass index. To our knowledge, no previous studies have explored the role of NLRP3 inflammasome markers in linking COPD and obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!