Pancreatic β-cells are highly responsive to changes in glucose, but the mechanisms involved are only partially understood. There is increasing evidence that the β-catenin signalling pathway plays an important role in regulating β-cell function, but the mechanisms regulating β-catenin signalling in these cells is not well understood. In the present study we show that β-catenin levels and downstream signalling are regulated by changes in glucose levels in INS-1E and β-TC6-F7 β-cell models. We found a glucose-dependent increase in levels of β-catenin in the cytoplasm and nucleus of INS-1E cells. Expression of cyclin D1 also increased with glucose and required the presence of β-catenin. This was associated with an increase in phosphorylation of β-catenin on Ser552, which is known to stabilize the molecule and increase its transcriptional activity. In a search for possible signalling intermediates we found forskolin and cell-permeable cAMP analogues recapitulated the glucose effects, suggesting a role for cAMP and PKA (cAMP-dependent protein kinase/protein kinase A) downstream of glucose. Furthermore, glucose caused sustained increases in cAMP. Two different inhibitors of adenylate cyclase and PKA signalling blocked the effects of glucose, whereas siRNA (small interfering RNA) knockdown of PKA blocked the effects of glucose on β-catenin signalling. Finally, reducing β-catenin levels with either siRNA or pyrvinium impaired glucose- and KCl-stimulated insulin secretion. Taken together the results of the present study define a pathway by which changes in glucose levels can regulate β-catenin using a mechanism which involves cAMP production and the activation of PKA. This identifies a pathway that may be important in glucose-dependent regulation of gene expression and insulin secretion in β-cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20121454 | DOI Listing |
Paediatr Drugs
January 2025
Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
Background: This study aimed to provide a comprehensive review of adverse events (AEs) associated with factor Xa (FXa) inhibitors in pediatric patients.
Methods: We searched PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and the European Union Clinical Trials Register for English-language records from the establishment of the database up to October 17, 2023.
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!