Object: Previous studies have demonstrated that traumatic brain injury (TBI) causes brain edema by allowing excessive water passage through aquaporin (AQP) proteins. To establish the potential neuroprotective properties of ethanol as a post-TBI therapy, in the present study the authors determined the effect of ethanol on brain edema, AQP expression, and functional outcomes in a post-TBI setting.

Methods: Adult male Sprague-Dawley rats weighing between 425 and 475 g received a closed head TBI in which Maramarou's impact-acceleration method was used. Animals were given a subsequent intraperitoneal injection of 0.5 g/kg or 1.5 g/kg ethanol at 60 minutes post-TBI and were killed 24 hours after TBI. Brains were subsequently examined for edema along with AQP mRNA and protein expression. Additional animals treated with either 0.5 g/kg or 1.5 g/kg ethanol at 60 minutes post-TBI were designated for cognitive and motor testing for 3 weeks.

Results: Ethanol administration post-TBI led to significantly (p < 0.05) lower levels of brain edema as measured by brain water content. This downregulation in brain edema was associated with significantly (p < 0.05) reduced levels of AQP mRNA and protein expression as compared with TBI without treatment. These findings concur with cognitive studies in which ethanol-treated animals exhibited significantly (p < 0.05) faster radial maze completion times. Motor behavioral testing additionally demonstrated significant (p < 0.05) beneficial effects of ethanol, with treated animals displaying improved motor coordination when compared with untreated animals.

Conclusions: The present findings suggest that acute ethanol administration after a TBI decreases AQP expression, which may lead to reduced cerebral edema. Ethanol-treated animals additionally showed improved cognitive and motor outcomes compared with untreated animals.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2012.8.JNS12736DOI Listing

Publication Analysis

Top Keywords

brain edema
20
ethanol
8
acute ethanol
8
traumatic brain
8
brain injury
8
edema aqp
8
aqp expression
8
g/kg g/kg
8
g/kg ethanol
8
ethanol minutes
8

Similar Publications

Objectives: This study aimed to investigate the potential effects of different doses of essential oil (Lavender EO) administered by inhalation on sleep latency and neuromodulators regulating the sleep/wake cycle in rats with total sleep deprivation (TSD).

Materials And Methods: Forty-eight male Sprague-Dawley rats were divided into five groups: Control, Alprazolam (ALP, 0.25 mg/kg given intraperitoneally), L1 (Lavender EO, 0.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhagic stroke (ICH) is a highly aggressive disease, with a high incidence and mortality rate. Iron deposition following ICH leads to oxidative damage and motor dysfunction, significantly impacting the overall quality of life for those affected. Here, a polyphenolic nanomedicine, catechin-based polyphenol nanoparticles surface-modified by thiol-terminated poly(ethylene glycol) (CNPs@PEG), was developed through the oxidative polymerization and self-assembly of catechin, a natural compound in tea.

View Article and Find Full Text PDF

Acute internal carotid artery occlusion (AICAO) can result in malignant cerebral edema and unfavorable patient outcomes. This study evaluated the utility of transcranial Doppler (TCD) in assessing contralateral flow compensation and predicting outcomes in patients with AICAO. We enrolled 51 patients within 6 h of symptom onset and conducted TCD examinations to evaluate collateral circulation.

View Article and Find Full Text PDF

Therapeutic Potential of Shilong Qingxue Granule and Its Extract Against Glutamate Induced Neural Injury: Insights from In Vivo and In Vitro Models.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:

Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.

Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.

Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.

View Article and Find Full Text PDF

Mogroside V ameliorates astrocyte inflammation induced by cerebral ischemia through suppressing TLR4/TRADD pathway.

Int Immunopharmacol

January 2025

Medical College of Guangxi University, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, Fuzhou, 350001, China; Stem Cell Therapy Research Center, Fuzhou 350001, China.. Electronic address:

Inflammation and oxidative stress are pivotal factors in the onset and progression of secondary injury following cerebral ischemia-reperfusion (I/R). Mogroside V (MV), a primary active compound of Siraitia grosvenorii, exhibits significant anti-inflammatory and antioxidant properties. However, its specific effects in cerebral ischemia remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!