Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages.

Physiol Plant

Department of Agricultural Sciences, University of Bologna, IT-40127, Bologna, Italy.

Published: September 2013

Sweet sorghum (Sorghum bicolor) is a C4 drought resistant species with a huge potential for bioenergy. Accentuated reductions in water availability for crop production and altered rainfall distribution patterns, however, will have direct impact on its physiological attributes, metabolic functions and plant growth. The objective of this study was to evaluate the effects of drought and re-watering on the photosynthetic efficiency of sweet sorghum. Durable or short transient drought stress periods were imposed at early and late growth stages and compared with well-watered plants. In spite of very similar drought levels at early and late growth stages (Ψsoil  = -1.6 and -1.7 MPa), the decrements in maximum quantum yield (ϕPo ) and performance index (PI) were about twice at late than at early growth stages. All the PI components, that is, density of active reaction centers (RCs), excitation energy trapping and conversion of excitation energy into electron flow followed a similar decreasing pattern. Upon re-watering and regardless the duration and growth stage of the drought period, all the photosynthetic functions, and particularly those of photosystem II (PSII), fully recovered. Such effective self-regulating functional activity by PSII photochemistry likely contributes to both high drought resistance and photosynthetic recovery capacity of sweet sorghum. At vegetative growth stages, the down regulation of the photochemistry seems to be the main photoprotective/regulative mechanisms, while at late growth stages, the accumulation of compatible solutes likely has a more preponderant role. The observed sugar concentration increments likely contributed to prevent permanent photo-oxidative destruction of the PSII RCs of mature droughted sweet sorghum plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12016DOI Listing

Publication Analysis

Top Keywords

growth stages
24
sweet sorghum
20
late growth
12
drought re-watering
8
growth
8
early late
8
excitation energy
8
drought
7
sorghum
6
stages
6

Similar Publications

Are You My Host? An Overview of Methods Used to Link Bacteriophages with Hosts.

Viruses

January 2025

Department of Biology and Toxicology, Ashland University, Ashland, OH 44805, USA.

Until recently, the only methods for finding out if a particular strain or species of bacteria could be a host for a particular bacteriophage was to see if the bacteriophage could infect that bacterium and kill it, releasing progeny phages. Establishing the host range of a bacteriophage thus meant infecting many different bacteria and seeing if the phage could kill each one. Detection of bacterial killing can be achieved on solid media (plaques, spots) or broth (culture clearing).

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Planting aluminum-tolerant legume green manure is a cost-effective and sustainable method to increase soil fertility as well as decrease Al toxicity in acidic soils. By analyzing the relative root elongation of seven legume green manure species, common vetch ( L.) was identified as an Al-resistant species.

View Article and Find Full Text PDF

Nitrogen (N) is an essential determinant of strawberry growth and productivity. However, plants exhibit varying preferences for sources of nitrogen, which ultimately affects its use efficiency. Thus, it is imperative to determine the preferred N source for the optimization of indoor strawberry production.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!