From the reactions between M(2)(T(i)PB)(4) and HO(2)CC(6)H(5)-η(6)-Cr(CO)(3) (2 equiv), the title compounds trans-M(2)(T(i)PB)(2)[O(2)CC(6)H(5)-η(6)-Cr(CO)(3)](2), where M = Mo or W, and T(i)PB = 2,4,6-triisopropylbenzoate have been prepared and characterized. Compound I (M = Mo) was characterized by a single crystal X-ray structural determination which revealed a centrosymmetric MoMo quadruply bonded molecule. Compound I is red and the tungsten complex II is blue as a result of intense metal-to-ligand charge transfer (MLCT), which is principally M(2)δ to benzoate π* with some chromium t(2g) participation, according to calculations employing density functional theory. Compound I shows dual emission from S(1) and T(1) states that are assigned (1)MLCT and (3) MoMoδδ*, respectively. Both complexes have been studied by time-resolved infrared spectroscopy (TRIR) in the region of the carbonyl stretching frequency. Compound II displays a shift of ν(CO) to lower energy in both the (1)MLCT and (3)MLCT states in THF, while I in CH(2)Cl(2) shows ν(CO) bands shifted to both higher and lower energy. We attribute the shift to higher energy seen for I to a Cr t(2g) to benzoate π* transition which mixes with the Mo(2)δ to benzoate charge transfer upon excitation at 514 nm. In THF compound I undergoes a reversible photodissociation, potentially due to CO loss. Based on the TRIR of the carbonyl vibrations, it is proposed that the MLCT states are delocalized over both benzoate Cr(CO)(3) groups, as supported by calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja310651y | DOI Listing |
Phys Chem Chem Phys
July 2024
Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Molecular transport is an important aspect in metal-organic frameworks (MOFs) as it affects many of their applications, such as adsorption/separation, drug delivery and catalysis. Yet probing the fundamental diffusion mechanisms in MOFs is challenging, and the interplay between the MOF's features (such as the pore structure and linker dynamics) and molecular transport remains mostly unexplored. Here, the pulsed-field gradient nuclear magnetic resonance (PFG NMR) technique is used to probe the diffusion of several probe molecules, , water, xylenes and 1,3,5-triisopropylbenzene (TIPB), within the UiO-66 MOF and its derivatives (UiO-66NH and UiO-66Br).
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2024
Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China. Electronic address:
Mesoporous aluminosilicates Al-SBA-15 with large pore sizes and suitable acid properties are promising substitutes to zeolites for catalytic cracking of bulky hydrocarbons without molecular diffusion limitation. The conventional processes to synthesize Al-SBA-15 are time-consuming and often suffer from low "framework" Al contents. Herein, Al-SBA-15 microspheres are synthesized using the rapid and scalable microfluidic jet spray drying technique.
View Article and Find Full Text PDFSmall
June 2024
Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
Deep cracking of bulky hydrocarbons on zeolite-containing catalysts into light products with high activity, desired selectivity, and long-term stability is demanded but challenging. Herein, the efficient deep cracking of 1,3,5-triisopropylbenzene (TIPB) on intimate ZSM-5@AlSBA-15 composites via tandem catalysis is demonstrated. The rapid aerosol-confined assembly enables the synthesis of the composites composed of a continuous AlSBA-15 matrix decorated with isolated ZSM-5 nanoparticles.
View Article and Find Full Text PDFSensors (Basel)
April 2023
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
There is an ongoing forensic and security need for rapid, on-scene, easy-to-use, non-invasive chemical identification of intact energetic materials at pre-explosion crime scenes. Recent technological advances in instrument miniaturization, wireless transfer and cloud storage of digital data, and multivariate data analysis have created new and very promising options for the use of near-infrared (NIR) spectroscopy in forensic science. This study shows that in addition to drugs of abuse, portable NIR spectroscopy with multivariate data analysis also offers excellent opportunities to identify intact energetic materials and mixtures.
View Article and Find Full Text PDFMacromol Rapid Commun
April 2023
Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan.
Inverse vulcanization utilizes an organic compound as reagent for crosslinking elemental sulfur to result in corresponding polymeric material with a high sulfur content. This work, employing 1,3,5-triisopropylbenzene (TIPB) as the reagent, demonstrates the first attempt on extending the scope of crosslinking agents of inverse vulcanization to saturate compounds. Under nuclear magnetic spectroscopic analysis, the reactions between TIPB and elemental sulfur take places through ring-opening reaction of S resulting in sulfur radicals at sulfur chain ends, radicals transferring to isopropyl groups of TIPB, and radical coupling reactions between carbon radicals and sulfur radicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!