AI Article Synopsis

  • Genetic polymorphisms may determine individual susceptibility to exertional rhabdomyolysis (ER) and elevated serum creatine kinase (CK) levels after physical activity.
  • In a study of 499 Army recruits, no participants developed ER, but specific genetic variants were linked to higher CK levels both at baseline and during training.
  • Among African-American recruits, those with the MLCK2 AA genotype showed significantly higher baseline CK levels, suggesting a potential connection between this genetic factor and ER risk, warranting further research.

Article Abstract

Genetic polymorphisms may explain why certain individuals will develop exertional rhabdomyolysis (ER) or markedly elevated serum creatine kinase (CK) levels following exertion, while others in the same environment, performing the same exertion, do not. Prospectively, 499 recruits were evaluated during the initial fortnight of Army basic training. Serum CK levels were determined before and during that time. Eleven candidate genetic polymorphisms were studied and compared to CK levels. No subjects developed ER. Baseline CK was significantly greater in interleukin-6 G174C GG and myosin light chain kinase 2 (MLCK 2) AA subjects. Intertraining levels were significantly greater in angiotensin I-converting enzyme D/D and interleukin-6 GG subjects. Among African-Americans, those with MLCK2 AA had greater baseline CK (1,352 +/- 1,102.8 IU/L) than AC and CC genotypes (536.9 +/- 500.6). African-American men have the highest baseline levels and are more likely to have MLCK AA genotype. Whether this finding is associated with an increased incidence of ER requires further study.

Download full-text PDF

Source
http://dx.doi.org/10.7205/milmed-d-12-00086DOI Listing

Publication Analysis

Top Keywords

genetic polymorphisms
12
serum creatine
8
creatine kinase
8
levels
5
investigation relationship
4
relationship serum
4
kinase genetic
4
polymorphisms military
4
military recruits
4
recruits genetic
4

Similar Publications

Research evidence has demonstrated a significant association between hypertrophic cardiomyopathy (HCM) and atrial fibrillation (AF), but the causality and pattern of this link remain unexplored. Therefore, this study investigated the causal relationship between HCM and AF using a two-sample and bidirectional Mendelian randomization (MR) approach. Additionally, this assessed the role of cardiovascular proteins (CPs) associated with cardiovascular diseases between HCM and AF by applying a two-step MR analysis.

View Article and Find Full Text PDF

Epidemiological studies indicate that the involvement of the immune system in the pathogenesis of infections associated with chronic obstructive pulmonary disease (COPD), asthma, and interstitial lung disease (ILD) remains unclear. This study aims to assess the potential causal link between infections associated with COPD, asthma, or ILD and immune system function. We conducted a two-sample Mendelian randomization analysis using publicly available genome-wide association study (GWAS) datasets.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

The global number of COVID-19 deaths has reached 7 million, with 4% of these deaths occurring in children and adolescents. In Brazil, around 1500 children up to 11 years old died from the disease. The most common symptoms in children are respiratory, potentially progressing to severe illnesses, such as severe acute respiratory syndrome (SARS) and MIS-C.

View Article and Find Full Text PDF

Genetic polymorphism of the dihydropyrimidine dehydrogenase gene () is responsible for the variability found in the metabolism of fluoropyrimidines such as 5-fluorouracil (5-FU), capecitabine, or tegafur. The genotype is linked to variability in enzyme activity, 5-FU elimination, and toxicity. Approximately 10-40% of patients treated with fluoropyrimidines develop severe toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!