The association between β-glucan (MacroGard®) supplemented feed and apoptosis in immune-related organs of common carp (Cyprinus carpio) was studied using fluorescence microscopy and real-time PCR. In addition the effect of Aeromonas salmonicida, LPS and Poly(I:C) injections on this relationship was evaluated. Whilst acridine orange staining revealed that apoptosis levels were independent of MacroGard® and LPS/Poly(I:C) administration or their combination, it was shown that injection with A. salmonicida increased the percentage of apoptotic cells irrespective of the feeding regime. It was apparent that in all the treatments gene expression profiles displayed organ and time dependency. For example no effect was observed at 7 days of MacroGard® administration while 25 days of feeding led to increased iNOS expression and differential up-regulation of anti- or pro-apoptotic genes depending on organ. This may indicate differences in NO sensitivity. MacroGard® also led to an elevation of pro- as well as anti-apoptotic genes in LPS or Poly(I:C) injected fish, while LPS/Poly(I:C) alone had little effect. A. salmonicida caused enhanced iNOS expression and it is possible that the type of apoptosis pathway induced is organ dependent as Caspase 9 is induced in mid-gut but not in pronephros. These results indicate that MacroGard® feeding alone or in combination with other pathogenic factors did not induce significant apoptosis in immune organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2012.07.014 | DOI Listing |
Can J Microbiol
January 2025
Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada.
The use of probiotics is an alternative approach to mitigate the proliferation of antimicrobial resistance in aquaculture. In our study, we examined the effects of GG (ATCC 53103, LGG) delivered in-feed on the weight, length, skin mucus, and faecal microbiomes of Atlantic salmon. We also challenged the salmon with 2004-05MF26 (Asal2004) and assessed the mortality.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
Bacteria of the genus are widely distributed in water bodies around the world. Some species have been identified as human pathogens causing intestinal and a variety of extraintestinal infections. In Germany, information on diseases caused by is rare, because infections are not notifiable in Germany.
View Article and Find Full Text PDFFront Immunol
December 2024
Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
Introduction: Furunculosis, caused by the gram-negative bacterium subsp. , remains a significant threat to turbot () aquaculture. Identifying genetic backgrounds with enhanced disease resistance is critical for improving aquaculture health management, reducing antibiotic dependency, and mitigating economic losses.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
Aeromonas salmonicida belongs to the Aeromonas family, which could widely infect economic fish, causing diseases and huge economic losses. Recently, A. salmonicida was also detected in diseased Odontobutis potamophila.
View Article and Find Full Text PDFFood Res Int
November 2024
Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China. Electronic address:
Foodborne bacteria can pose a threat to the public health due to their spoilage and virulence potential, which can be regulated by quorum sensing (QS) system. In the study, we isolated a spoilage bacteria strain Aeromonas salmonicida GMT3 from refrigerated sturgeon. The complete genome of A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!