Synchronization of chaotic neurons under external electrical stimulation (EES) is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN) neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L(2) gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L(2) bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502803 | PMC |
http://dx.doi.org/10.1155/2012/230980 | DOI Listing |
Front Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China.
In this study, we introduce a coupled fractional system consisting of two fluctuating-mass oscillators with time delay and investigate their collective resonant behaviors. First, we achieve complete synchronization between the average behaviors of these oscillators. We then derive the exact analytical expression for the output amplitude gain, and based on this, we observe generalized stochastic resonance (GSR) in the system.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
College of Nursing, Yonsei University, Seoul, Republic of Korea.
Background: Early intervention during the first 3 years of life is crucial for children with developmental disabilities to optimize developmental outcomes. However, access to such services is often limited by geographical distance and resource constraints. Telehealth can be part of a solution for overcoming these barriers, enabling the delivery of early intervention services.
View Article and Find Full Text PDFCurr Biol
January 2025
Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany. Electronic address:
Brood care relies on interactions between parents and offspring. Emergence of nestlings from their nest has been hypothesized to rely on the readout by the parent of the maturational state of the young. Theoretical considerations predict a conflict: parents should push for early emergence, if possible, to reduce care demands and maximize the number of reproductive cycles, whereas offspring should delay leaving to maximize resource allocation and protection by the parents.
View Article and Find Full Text PDFJ Sleep Res
January 2025
Department of Light Sources and Illuminating Engineering, School of Information Science and Technology, Fudan University, Shanghai, China.
The '6-h on/6-h off' shift pattern could potentially disrupt the physiological rhythms and cognitive performance of seafarers, attributed to its shorter and more frequent shifts. Conversely, light exposure has been demonstrated to enhance cognitive abilities and synchronise physiological processes. Therefore, we studied the fatigue, cognition, sleep and rhythm of seafarers with different shifts to determine how light can benefit their performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!