The induced pluripotent stem cell (iPSC) technology enables derivation of patient-specific pluripotent stem cells from adult somatic cells without using an embryonic cell source. Redifferentiation of iPSCs from diabetic patients into pancreatic islets will allow patient-specific disease modeling and autologous cell replacement therapy for failing islets. To date, diabetes-specific iPSCs have been generated from patients with type 1 diabetes using integrating retroviral vectors. However, vector integration into the host genome could compromise the biosafety and differentiation propensities of derived iPSCs. Although various integration-free reprogramming systems have been described, their utility to reprogram somatic cells from patients remains largely undetermined. Here, we used nonintegrating Sendai viral vectors to reprogram cells from patients with type 1 and type 2 diabetes (T2D). Sendai vector infection led to reproducible generation of genomic modification-free iPSCs (SV-iPSCs) from patients with diabetes, including an 85-year-old individual with T2D. SV-iPSCs lost the Sendai viral genome and antigens within 8-12 passages while maintaining pluripotency. Genome-wide transcriptome analysis of SV-iPSCs revealed induction of endogenous pluripotency genes and downregulation of genes involved in the oxidative stress response and the INK4/ARF pathways, including p16(INK4a), p15(INK4b), and p21(CIP1). SV-iPSCs and iPSCs made with integrating lentiviral vectors demonstrated remarkable similarities in global gene expression profiles. Thus, the Sendai vector system facilitates reliable reprogramming of patient cells into transgene-free iPSCs, providing a pluripotent platform for personalized diagnostic and therapeutic approaches for diabetes and diabetes-associated complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652675PMC
http://dx.doi.org/10.5966/sctm.2011-0044DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
12
cells patients
12
patients type
12
type diabetes
12
induced pluripotent
8
stem cells
8
type type
8
somatic cells
8
sendai viral
8
sendai vector
8

Similar Publications

Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.

View Article and Find Full Text PDF

Microglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.

View Article and Find Full Text PDF

Lymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.

View Article and Find Full Text PDF

Unlabelled: Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial TRAP-MS ( NCT03109288 ) to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA).

View Article and Find Full Text PDF

Sacubitril/valsartan (Sac/Val) belongs to the group of angiotensin receptor-neprilysin inhibitors and has been used for the treatment of heart failure (HF) for several years. The mechanisms that mediate the beneficial effects of Sac/Val are not yet fully understood. In this study we investigated whether Sac/Val influences the two proteolytic systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), in a mouse model of pressure overload induced by transverse aortic constriction (TAC) and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with endothelin-1 (ET1) serving as a human cellular model of hypertrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!