Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the developing nervous system, cell diversification depends on the ability of neural progenitor cells to divide asymmetrically to generate daughter cells that acquire different identities. While much work has recently focused on the mechanisms controlling self-renewing asymmetric divisions producing a differentiating daughter and a progenitor, little is known about mechanisms regulating how distinct differentiating cell types are produced at terminal divisions. Here we study the role of the endocytic adaptor protein Numb in the developing mouse retina. Using clonal numb inactivation in retinal progenitor cells (RPCs), we show that Numb is required for normal cell-cycle progression at early stages, but is dispensable for the production of self-renewing asymmetric cell divisions. At late stages, however, Numb is no longer required for cell-cycle progression, but is critical for the production of terminal asymmetric cell divisions. In the absence of Numb, asymmetric terminal divisions that generate a photoreceptor and a non-photoreceptor cell are decreased in favor of symmetric terminal divisions generating two photoreceptors. Using live imaging in retinal explants, we show that a Numb fusion protein is asymmetrically inherited by the daughter cells of some late RPC divisions. Together with our finding that Numb antagonizes Notch signaling in late-stage RPCs, and that blocking Notch signaling in late RPCs almost completely abolishes the generation of terminal asymmetric divisions, these results suggest a model in which asymmetric inheritance of Numb in sister cells of terminal divisions might create unequal Notch activity, which in turn drives the production of terminal asymmetric divisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650329 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4127-12.2012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!