A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The heterogeneity in femoral neck structure and strength. | LitMetric

Most measures of femoral neck strength derived using dual-energy X-ray absorptiometry or computed tomography (CT) assume the femoral neck is a cylinder with a single cortical thickness. We hypothesized that these simplifications introduce errors in estimating strength and that detailed analyses will identify new parameters that more accurately predict femoral neck strength. High-resolution CT data were used to evaluate 457 cross-sectional slices along the femoral neck of 12 postmortem specimens. Cortical morphology was measured in each cross-section. The distribution of cortical thicknesses was evaluated to determine whether the mean or median better estimated central tendency. Finite-element models were used to calculate the stresses in each cross-section resulting from the peak hip joint forces created during a sideways fall. The relationship between cortical morphology and peak bone stress along the femoral neck was analyzed using multivariate regression analysis. In all cross-sections, cortical thicknesses were non-normally distributed and skewed toward smaller thicknesses (p < 0.0001). The central tendency of cortical thickness was best estimated by the median, not the mean. Stress increased as the median cortical thickness decreased along the femoral neck. The median, not mean, cortical thickness combined with anterior-posterior diameter best predicted peak bone stress generated during a sideways fall (R(2) = 0.66, p < 0.001). Heterogeneity in the structure of the femoral neck determines the diversity of its strength. The median cortical thickness best predicted peak femoral neck stress and is likely to be a relevant predictor of femoral neck fragility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.1827DOI Listing

Publication Analysis

Top Keywords

femoral neck
40
cortical thickness
20
median cortical
12
neck
10
femoral
9
cortical
9
neck strength
8
cortical morphology
8
cortical thicknesses
8
central tendency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!