Bifidobacteria are widely used as probiotics and have attracted increasing research interest worldwide. However, molecular techniques are still very scarce mainly due to the low efficiencies and strain-specific electroporation protocols that have been developed. Bacterial conjugation enables the transfer of genetic material among a relatively wide range of organisms and with virtually no size limitation. A conjugation protocol was developed based on the RP4 conjugative machinery in the Escherichia coli strain WM3064(pBB109). Using this machinery, the newly constructed transmissible E. coli-Bifidobacterium shuttle vector, pDOJHR-WD2, was successfully and consistently transferred into several strains representing four Bifidobacterium species at efficiencies which correlated with the E. coli to bifidobacteria ratios. Higher ratios were found to significantly improve transfer frequency per recipient, with almost 100 % transfer frequency occurring when the ratio was 10(5) : 1. The incompatible resident plasmid, pDOJH10S, in Bifidobacterium longum DJO10A was able to coexist, albeit at lower copy numbers, with the incoming vector pDOJHR-WD2 even though they possess the same ori. In some cases the copy number of this resident plasmid was too low to observe via gel electrophoresis, but it could be detected by Southern hybridization. Plasmid curing resulted in a strain, DJO10A-W3, that had lost both plasmids and this showed a one-log increase in conjugation efficiency due to the lack of plasmid incompatibility. In conclusion, this novel conjugative gene transfer protocol can be used for the introduction of genetic material (without size restriction) into Bifdobacterium species and is particularly useful for strains that are recalcitrant to electroporation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.061408-0 | DOI Listing |
PLoS One
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts.
View Article and Find Full Text PDFZool Res
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.
Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.
View Article and Find Full Text PDFJ Oral Microbiol
January 2025
Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China.
Background And Objective: Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease.
Methods: To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!