Non-diapausing spider mites (Tetranychus urticae) live on the undersurface of host leaves during summer, but diapausing mites overwinter in dark hibernacula. The light environments of these habitats differ: visible radiation (VIS) but not ultraviolet radiation (UV) reaches the undersurface of leaves, but neither enters dark hibernacula. Thus, mites of either seasonal form could locate their preferred habitat by photo-orientation responses to UV and VIS. To investigate this possibility, we analysed the mites' locomotion behaviour on a virtual field with a programmed chequered pattern of light and dark patches in a micro-locomotion compensator. Both non-diapausing and diapausing mites moved away from UV-illuminated patches into dark patches. Non-diapausing mites moved towards VIS-illuminated patches, whereas diapausing mites did not show a preference. Our results show that non-diapausing mites avoid UV and are attracted to VIS, suggesting that this can guide them beneath a leaf. Diapausing mites simply avoid UV. The lack of a preference for VIS during diapause could be due to changes in carotenoid metabolism, which also involve orange pigmentation of diapausing mites. We consider that a diapause-mediated switch of the response to VIS, together with regular avoidance of UV, plays a key role in the seasonal change of habitat selection in this species. This seasonal polyphenism involves alterations in not only reproductive state and pigmentation, but also in photo-spectral responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.079582 | DOI Listing |
Exp Appl Acarol
December 2024
Faculty of Agriculture and Marine Science, Kochi University, 200 Monobeotsu, Nankoku, Kochi, 783-8502, Japan.
Spider mites (Acari: Tetranychidae) overwinter as eggs or adult females, but some do so as multiple life stages on evergreen hosts. However, proximate factors influencing such overwintering stages remain poorly understood. This study investigated photoperiodic responses and life-stage compositions during winter in a population of Schizotetranychus shii, a specialist of Japanese chinquapin (Fagaceae).
View Article and Find Full Text PDFExp Appl Acarol
May 2024
Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, La Rioja, Spain.
The European red mite Panonychus ulmi (Koch) is widely distributed and it can severely affect pome fruit crops, particularly apple. Pest outbreaks are related to an overuse of non-selective pesticide treatments that lead to the development of resistance and the absence of natural enemies in the orchard. A key aspect to optimize the use of pesticide treatments in the context of IPM is to increase the knowledge on the biology and ecology of the pest to better predict population dynamics and outbreaks.
View Article and Find Full Text PDFPest Manag Sci
July 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: The ladybeetle, Coccinella septempunctata, an important predator, is widely used to control aphids, whiteflies, mites, thrips, and lepidopteran pests. Diapause control technology is key to extending C. septempunctata shelf-life and commercialization.
View Article and Find Full Text PDFExp Appl Acarol
December 2022
Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, PO Box 115, 1431, Ås, Norway.
In this study, we investigated if a steam treatment program used to produce disease-free strawberry transplants has the potential to also eliminate strawberry mite (Phytonemus pallidus) and two-spotted spider mite (Tetranychus urticae). Crowns of strawberry plants collected in a commercial field, containing young, folded leaves with all life stages of P. pallidus, and strawberry leaf discs on water agar with T.
View Article and Find Full Text PDFFront Physiol
June 2022
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
The photoperiodic system is concealed in the highly complex black-box, comprising four functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4) a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize the research history and current reach of our understanding on this subject to connect it with the molecular mechanism of the circadian clock rapidly being unveiled. The review also focuses on the mode of intersubunit information transduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!