In vitro pharmacological profiling is increasingly being used earlier in the drug discovery process to identify undesirable off-target activity profiles that could hinder or halt the development of candidate drugs or even lead to market withdrawal if discovered after a drug is approved. Here, for the first time, the rationale, strategies and methodologies for in vitro pharmacological profiling at four major pharmaceutical companies (AstraZeneca, GlaxoSmithKline, Novartis and Pfizer) are presented and illustrated with examples of their impact on the drug discovery process. We hope that this will enable other companies and academic institutions to benefit from this knowledge and consider joining us in our collaborative knowledge sharing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrd3845 | DOI Listing |
PLoS One
January 2025
Medical Faculty, Department of Neurology, Otto von Guericke University, Magdeburg, Germany.
For the last 38 years, all neuroprotective agents for patients with ischemic stroke have failed in clinical trials. The innate immune system, particularly microglia, is a much-discussed target for neuroprotective agents. Promising results for neuroprotection by inhibition of integrins with drugs such as natalizumab in animal stroke models have not been translated into clinical practice.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang City, Guizhou, China.
Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;
Acanthoside B (Aca.B), a principal bioactive compound extracted from , exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology.
View Article and Find Full Text PDFNeurochem Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!