Glucocorticoid (GC) sensitivity depends on glucocorticoid receptor (GR) and heat shock proteins (Hsps). We investigated whether common GR genes (ER22/23EK, N363S, Bcl I, and 9β) and adrenocorticotropin receptor promoter polymorphisms influence susceptibility for unilateral adrenal incidentaloma (AI), plus GR and Hsp expression in tumorous (n = 19), peritumorous (n = 13) and normal adrenocortical (n = 11) tissues. Patients (n = 112), population-matched controls (n = 100) and tumor tissues (n = 32) were genotyped for these polymorphisms. Postdexamethasone serum cortisol was higher in patients (p < 0.001). GR gene variants, larger allele of Bcl I (odds ratio [OR] 2.9; 95% confidence interval [CI] 1.7-5.1; p < 0.001] and minor allele of 9β (OR 3.0; 95% CI 1.6-5.7; p < 0.001) were independent predictors of AI. In patients, the first allele is linked with larger tumors (p = 0.002) and the latter with higher postdexamethasone cortisol levels (p = 0.025). Both allele carriers had lesser waist circumference (p = 0.02), similar adrenocorticotropin and higher basal (p = 0.024) and postdexamethasone cortisol concentrations (p < 0.001). Tumorous and constitutional genotypes were similar. GR-D is the major receptor isoform in normal adrenal cortex by Western blotting. Loss of other receptor isoforms, decrease in immunostaining for GR (p < 0.0001), underexpression of chaperones (p ≤ 0.01) and the presence of inducible Hsp70 were found in adenomas. In conclusion, GR gene variants, C allele of Bcl I and minor allele of 9β, are associated with AIs. Their concurrent presence in patients reduces GC sensitivity. Normal adrenal cortex preferentially expresses GR-D. In adenomas, the lack of other GR isoforms and underexpression of heat shock proteins perhaps permanently impair GC signaling, which could promote dysregulated cortisol production and tumor growth. The innate GC sensitivity probably modifies these effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563706PMC
http://dx.doi.org/10.2119/molmed.2012.00261DOI Listing

Publication Analysis

Top Keywords

glucocorticoid receptor
8
heat shock
8
shock proteins
8
gene variants
8
allele bcl
8
minor allele
8
allele 9β
8
postdexamethasone cortisol
8
normal adrenal
8
adrenal cortex
8

Similar Publications

While the cohesin complex is a key player in genome architecture, how it localizes to specific chromatin sites is not understood. Recently, we and others have proposed that direct interactions with transcription factors lead to the localization of the cohesin-loader complex (NIPBL/MAU2) within enhancers. Here, we identify two clusters of LxxLL motifs within the NIPBL sequence that regulate NIPBL dynamics, interactome, and NIPBL-dependent transcriptional programs.

View Article and Find Full Text PDF

Background And Purpose: The main features of the dynamics of the glucocorticoid receptor (GR) have been known for 50 years: 1) in the absence of glucocorticoid (G), the receptor is localized entirely in the cytoplasm; 2) upon G binding, GR is converted into a tightly bound G form and is rapidly imported into the nucleus where it can bind DNA and modulate transcription; 3) nuclear export of GR is very slow; and 4) the nuclear form of GR can recycle through an unbound form, back to the bound transcription modulating form without leaving the nucleus.

Experimental Approach: A kinetic model that captures these features is presented, a set of model parameters for dexamethasone is derived, and the clinical implication for the commonly used glucocorticoids is discussed.

Key Results: At the high concentrations normally used to describe G pharmacodynamics, the model reduces to the standard Michaelis-Menten equation with a that is a function of 4 model parameters.

View Article and Find Full Text PDF

The synergistic interplay between cortisol and aldosterone is critical for maintaining homeostasis, particularly in blood pressure regulation, fluid balance, and stress response. Cortisol, a glucocorticoid, and aldosterone, a mineralocorticoid, often act in tandem to regulate sodium retention and blood volume. Dysregulation of these hormones, as seen in hyperaldosteronism or Cushing's syndrome, contributes to hypertension and metabolic imbalances.

View Article and Find Full Text PDF

Genes involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis, including the glucocorticoid receptor (GR), are linked to various stress-related psychopathologies including bipolar disorder as well as other mood and trauma-related disorders. The protein product of the cell cycle gene, is a GR interaction partner in peripheral cells. However, the precise roles of SKA2 in stress and GR signaling in the brain, specifically in nonreplicating postmitotic neurons, and its involvement in HPA axis regulation remain unclear.

View Article and Find Full Text PDF

Recent studies suggest that glucocorticoid receptor (GR) activation can cause enzalutamide resistance in advanced prostate cancer (PCa) via functional bypass of androgen receptor (AR) signaling. However, the specific molecular mechanism(s) driving this process remain unknown. We have previously reported that the transcription factor TBX2 is over-expressed in castrate-resistant prostate cancer (CRPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!