Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An acute increase in oxygen tension after birth imposes an oxidative stress upon the lung. We hypothesized that the resultant increase in reactive oxygen species, specifically lipid hydroperoxides, would trigger postnatal alveologenesis and physiological lung cell apoptosis in the neonatal rat. Neonatal rats were either untreated or treated daily with subcutaneous vehicle or diphenyl phenyl diamine, a scavenger of lipid hydroperoxides and inhibitor of lipid peroxidation, from day 1 to 6 of life. Alveolar formation and physiological lung cell apoptosis were assessed by morphometry, immunohistochemistry, and Western blot analyses on day 7 samples. Substitution experiments were conducted using the prototypic lipid hydroperoxide t-butylhydroperoxide. At a minimum effective dose of 15μg/g body wt, treatment with diphenyl phenyl diamine resulted in a significant increase in tissue fraction and mean linear intercept and significant reductions in small peripheral blood vessels, secondary crest formation, lung and secondary crest cell DNA synthesis, and estimated alveolar number. Decreased numbers of apoptotic type II pneumocytes and mesenchymal cells, and decreased contents of proapoptotic cleaved caspase-3 and -7 and cytoplasmic cytochrome c, and an increase in antiapoptotic Bcl-xL were found in lungs treated with diphenyl phenyl diamine. A prevention of selected changes induced by diphenyl phenyl diamine was observed with concurrent treatment with intraperitoneal t-butylhydroperoxide, at a minimally effective dose of 187μg/g body wt. We conclude that oxidative stress after birth induces lipid hydroperoxide formation, which, in turn, triggers postnatal alveologenesis and physiological lung cell apoptosis in the neonatal rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!