Background: Many studies have established a link between weather (primarily temperature) and daily mortality in developed countries. However, little is known about this relationship in urban populations in sub-Saharan Africa.
Objectives: The objective of this study was to describe the relationship between daily weather and mortality in Nairobi, Kenya, and to evaluate this relationship with regard to cause of death, age, and sex.
Methods: We utilized mortality data from the Nairobi Urban Health and Demographic Surveillance System and applied time-series models to study the relationship between daily weather and mortality for a population of approximately 60,000 during the period 2003-2008. We used a distributed lag approach to model the delayed effect of weather on mortality, stratified by cause of death, age, and sex.
Results: Increasing temperatures (above 75th percentile) were significantly associated with mortality in children and non-communicable disease (NCD) deaths. We found all-cause mortality of shorter lag of same day and previous day to increase by 3.0% for a 1 degree decrease from the 25th percentile of 18°C (not statistically significant). Mortality among people aged 50+ and children aged below 5 years appeared most susceptible to cold compared to other age groups. Rainfall, in the lag period of 0-29 days, increased all-cause mortality in general, but was found strongest related to mortality among females. Low temperatures were associated with deaths due to acute infections, whereas rainfall was associated with all-cause pneumonia and NCD deaths.
Conclusions: Increases in mortality were associated with both hot and cold weather as well as rainfall in Nairobi, but the relationship differed with regard to age, sex, and cause of death. Our findings indicate that weather-related mortality is a public health concern for the population in the informal settlements of Nairobi, Kenya, especially if current trends in climate change continue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509073 | PMC |
http://dx.doi.org/10.3402/gha.v5i0.19065 | DOI Listing |
Pathogens
January 2025
Japan Fisheries Research and Education Agency, Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Minami-Ise 516-0193, Mie, Japan.
Pinctada birnavirus (PiBV) is the causative agent of summer atrophy in pearl oyster ( (Gould)). The disease, which induces mass mortality in juveniles less than 1 year old and abnormalities in adults, was first reported in Japan in 2019. Research on the disease has been hindered by the lack of cell lines capable of propagating PiBV.
View Article and Find Full Text PDFInsects
December 2024
National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China.
Asian citrus psyllid (ACP), (Hemiptera: Liviidae), is one of the most devastating pests in citrus orchards due to its role in transmitting Huanglongbing (HLB). Currently, chemical control remains the most effective strategy for ACP management. Mineral oils are commonly used as insecticides or adjuvants in integrated pest management (IPM) practices.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Phytoplankton blooms exhibit varying patterns in timing and number of peaks within ecosystems. These differences in blooming patterns are partly explained by phytoplankton:nutrient interactions and external factors such as temperature, salinity and light availability. Understanding these interactions and drivers is essential for effective bloom management and modelling as driving factors potentially differ or are shared across ecosystems on regional scales.
View Article and Find Full Text PDFPhysiol Plant
January 2025
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China.
Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought.
View Article and Find Full Text PDFSci Rep
January 2025
Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zürich, 8046, Switzerland.
Solitary wild bees play a key role as pollinators of wild plants and crops, but they are increasingly at risk from anthropogenic global change, such as climate warming. However, how warmer temperature during overwintering affects reproductive success of those bees remains largely unknown. In a semi-field experiment we assessed individual life-long reproductive success of 144 females of the solitary bee species Osmia bicornis that had been wintered at three different temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!