AI Article Synopsis

  • Chronic exposure to estrogens like estradiol-17β (E2) can lead to significant reproductive issues in women, including cancer and anovulation, and research in female rats suggests this may occur through decreased norepinephrine (NE) release in the hypothalamus.
  • E2 exposure over time resulted in decreased LH secretion and failure of ovulation in rats, with specific mechanisms including increases in inflammatory markers like interleukin-1β and nitration of enzymes involved in NE synthesis.
  • Experimental findings showed that NE levels in the medial preoptic area were progressively reduced with longer E2 exposure, suggesting a link between chronic estrogen exposure and disruption of hormonal balance necessary for ovulation.

Article Abstract

Chronic exposure to estrogens is known to produce a variety of deleterious effects in women including breast and ovarian cancer and anovulation. In female rats, exposure to low levels of estradiol-17β (E2) decreases hypothalamic norepinephrine (NE) to suppress luteinizing hormone (LH) secretion and cause failure of ovulation. We hypothesized that E2 exposure most likely decreases NE release in the medial preoptic area (MPA) of the hypothalamus to produce this effect and that this may be due to E2-induced inflammatory changes in noradrenergic nuclei leading to nitration of an enzyme involved in NE synthesis. To test this, female Sprague Dawley rats were sham implanted or implanted with slow release E2 pellets (20ng/day) for 30, 60 or 90 days (E30, E60 and E90 respectively). At the end of the treatment period, the rats were implanted with a push-pull cannula in the MPA, ovariectomized and steroid primied to induce a LH surge and subjected to push-pull perfusion. Perfusates were analyzed for NE levels using HPLC-EC. Blood samples collected simultaneously were analyzed for LH levels. We measured interleukin-1β (IL-1β) and nitrate levels in brainstem noradrenergic nuclei that innervate the MPA. In control animals, there was a marked increase in NE levels in response to steroid priming at 1600h that was reduced in the E30 group, and completely abolished after 60 and 90 days of E2 exposure. LH profiles were similar to NE release profiles in control and E2-treated animals. We found that IL-1β levels increased in all three (A1, A2 and A6) noradrenergic nuclei with chronic E2 exposure, while nitrate levels increased only in the A6 region. There was an increase in the nitration of the NE synthesizing enzyme in the MPA in this group as well probably contributing to reduced NE synthesis. This could be a possible mechanism by which chronic E2 exposure decreases NE levels in the MPA to suppress the LH surge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545452PMC
http://dx.doi.org/10.1016/j.brainres.2012.11.031DOI Listing

Publication Analysis

Top Keywords

chronic exposure
12
noradrenergic nuclei
12
hypothalamic norepinephrine
8
luteinizing hormone
8
levels
8
exposure decreases
8
analyzed levels
8
nitrate levels
8
levels increased
8
exposure
7

Similar Publications

Arthropod-borne viral diseases are acute febrile illnesses, sometimes with chronic effects, that can be debilitating and even fatal worldwide, affecting particularly vulnerable populations. Indigenous communities face not only the burden of these acute febrile illnesses, but also the cardiovascular complications that are worsened by urbanization. A cross-sectional study was conducted in an Indigenous population in the Northeast Region of Brazil to explore the association between arboviral infections (dengue, chikungunya, and Zika) and cardiac biomarkers, including cardiotrophin 1, growth differentiation factor 15, lactate dehydrogenase B, fatty-acid-binding protein 3, myoglobin, N-terminal pro-B-type natriuretic peptide, cardiac troponin I, big endothelin 1, and creatine kinase-MB, along with clinical and anthropometric factors.

View Article and Find Full Text PDF

Evaluation of the Drug-Drug Interaction Potential of Cannabidiol Against UGT2B7-Mediated Morphine Metabolism Using Physiologically Based Pharmacokinetic Modeling.

Pharmaceutics

December 2024

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E Spokane Falls Blvd., Spokane, WA 99202, USA.

Morphine is a commonly prescribed opioid analgesic used to treat chronic pain. Morphine undergoes glucuronidation by UDP-glucuronosyltransferase (UGT) 2B7 to form morphine-3-glucuronide and morphine-6-glucuronide. Morphine is the gold standard for chronic pain management and has a narrow therapeutic index.

View Article and Find Full Text PDF

Background: Diphenhydramine is an anti-tussive used periodically to treat seasonal colds, contact dermatitis, and anaphylactic reactions. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of diphenhydramine in predicting its systemic exposure among healthy pediatrics (children and adolescents) by leveraging data files from adults (young and elderly).

Methods: The data profiles comprising serum/plasma concentration over time and parameters related to diphenhydramine were scrutinized via exhaustive literature analysis and consolidated in the PK-Sim software version 11.

View Article and Find Full Text PDF

Etrasimod is a newly FDA-approved Sphingosine-1-Phosphate modulator indicated for moderate and severe ulcerative colitis. It is extensively metabolized in the liver via the cytochrome P450 system and may accumulate markedly in patients with hepatic dysfunction, exposing them to toxicity. The aim of the current study is to utilize a physiologically-based pharmacokinetic modeling approach to evaluate the impact of hepatic impairment on the pharmacokinetic behavior of etrasimod and to appropriately select dosage regimens for patients with chronic liver disease; Methods: PK-Sim was used to develop the etrasimod PBPK model, which was verified using clinical data from healthy subjects and subsequently adapted to reflect the physiological changes associated with varying degrees of hepatic dysfunction; Results: Simulations indicated that hepatic clearance of etrasimod is clearly reduced in patients with Child-Pugh B and C liver impairment.

View Article and Find Full Text PDF

The acute and chronic toxicity of lead to was determined in this study using static replacement bioassay testing. During the chronic toxicity studies, an experiment on the bioremediation of lead toxicity using leaf powder was conducted. The 96 h LC values of lead for was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!