Improving local air quality in cities: to tree or not to tree?

Environ Pollut

Environmental Modelling Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium. Electronic address:

Published: December 2013

Vegetation is often quoted as an effective measure to mitigate urban air quality problems. In this work we demonstrate by the use of computer models that the air quality effect of urban vegetation is more complex than implied by such general assumptions. By modelling a variety of real-life examples we show that roadside urban vegetation rather leads to increased pollutant concentrations than it improves the air quality, at least locally. This can be explained by the fact that trees and other types of vegetation reduce the ventilation that is responsible for diluting the traffic emitted pollutants. This aerodynamic effect is shown to be much stronger than the pollutant removal capacity of vegetation. Although the modelling results may be subject to a certain level of uncertainty, our results strongly indicate that the use of urban vegetation for alleviating a local air pollution hotspot is not expected to be a viable solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2012.10.021DOI Listing

Publication Analysis

Top Keywords

air quality
16
urban vegetation
12
local air
8
vegetation
6
air
5
improving local
4
quality
4
quality cities
4
cities tree
4
tree tree?
4

Similar Publications

Background: Japanese encephalitis (JE) is a zoonotic parasitic disease caused by the Japanese encephalitis virus (JEV), and may cause fever, nausea, headache, or meningitis. It is currently unclear whether the epidemiological characteristics of the JEV have been affected by the extreme climatic conditions that have been observed in recent years.

Objective: This study aimed to examine the epidemiological characteristics, trends, and potential risk factors of JE in Taiwan from 2008 to 2020.

View Article and Find Full Text PDF

Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.

View Article and Find Full Text PDF

Under the background of climate change, the escalating air pollution and extreme weather events have been identified as risk factors for chronic respiratory diseases (CRD), causing serious public health burden worldwide. This review aims to summarize the effects of changed atmospheric environment caused by climate change on CRD. Results indicated an increased risk of CRD (mainly COPD, asthma) associated with environmental factors, such as air pollutants, adverse meteorological conditions, extreme temperatures, sandstorms, wildfire, and atmospheric allergens.

View Article and Find Full Text PDF

A Comprehensive OBD Data Analysis Framework: Identification and Factor Analysis of High-Emission Heavy-Duty Vehicles.

Environ Pollut

January 2025

Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.

On-Board Diagnostic (OBD) systems enable real-time monitoring of NOx emissions from heavy-duty diesel vehicles (HDDVs). However, few studies have focused on the root cause analysis of these emissions using OBD data. To address this gap, this study proposes an integrated analysis framework for HDDV NOx emissions that combines data processing, high-emission vehicle identification, and emission cause analysis.

View Article and Find Full Text PDF

Moderating Effect of Green Space on Relationship Between Atmospheric Particulate Matter and Cardiovascular and Cerebrovascular Disease Mortality in Ningxia, China.

Environ Res

January 2025

School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia. Electronic address:

Objective: This study explores the moderating effect of green space on the association between atmospheric particulate matter (PM) and cardiovascular and cerebrovascular disease (CCVD) mortality.

Methods: Data on CCVD mortality, PM, meteorological factors, and the Normalized Difference Vegetation Index (NDVI) of green spaces in Ningxia from 2010 to 2020 were collected. A time-series generalized additive mixed-effect model (GAMM) was applied to analyze the exposure-response relationship between PM and CCVD mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!