The Cryptophyta comprise photoautotrophic protists with complex plastids which harbor a remnant eukaryotic nucleus (nucleomorph) and a few heterotrophic taxa which either lack a plastid (Goniomonas) or contain a complex plastid devoid of pigments (Ieucoplast; Chilomonas). To resolve the phylogenetic relationships between photosynthetic, leucoplast-containing and aplastidial taxa, we determined complete nuclear-encoded SSU rRNA-sequences from 12 cryptophyte taxa representing the genera Cryptomonas, Chilomonas, Rhodomonas, Chroomonas, Hemiselmis, Proteomonas and Teleaulax and, as an outgroup taxon, Cyanoptyche gloeocystis (Glaucocystophyta). Phylogenetic analyses of SSU rRNA sequences from a total of 24 cryptophyte taxa rooted with 4 glaucocystophyte taxa using distance, parsimony and likelihood methods as well as LogDet transformations invariably position the aplastidial genus Goniomonas as a sister taxon to a monophyletic lineage consisting of all plastid containing cryptophytes including Chilomonas. Among the plastid-containing taxa, we identify six major clades each supported by high bootstrap values: clade I (Cryptomonas and Chilomonas), clade II (Rhodomonas, Pyrenomonas, Rhinomonas and Storeatula), clade III (Guillardia and the 'unidentified cryptophyte' strain CCMP 325), clade IV (Teleaulax and Geminigera), clade V (Proteomonas) and clade VI (Hemiselmis, Chroomonas and Komma). Clade I (Cryptomonas and Chilomonas) represents a sister group to clades II-VI which together form a monophyletic lineage; the phylogenetic relationships between clades II-VI remain largely unresolved. Chilomonas is positioned within the Cryptomonas clade and thus presumably evolved from a photosynthetic taxon of this genus. In our analysis the characters blue and red pigmentation do not correspond with a basal subdivision of the phylum, thus rejecting this character for higher-level classification of cryptophytes. However, different spectroscopic subtypes of phycoerythrin (PE I-III) and phycocyanin (PC II-IV) represent informative characters at a lower taxonomic level. Phycocyanin types are confined to the later diverging clade VI and within Hemiselmis, a species with phycocyanin is monophyletic with two species containing phycoerythrin. This supports previous molecular studies which demonstrated that the β subunit of all cryptophyte biliproteins, regardless of spectroscopic type, is phylogenetically derived from the red algal β-phycoerythrin gene family, therefore the cryptophyte phycocyanins presumably originated by chromophore replacement from phycoerythrin. Our phylogenetic analysis does not support a previous suggestion that the aplastidial cryptophyte Goniomonas evolved from an ancestor containing a complex cryptomonadtype plastid by nucleomorph and plastid loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1434-4610(98)70033-1DOI Listing

Publication Analysis

Top Keywords

phylogenetic relationships
12
cryptomonas chilomonas
12
clade
9
nuclear-encoded ssu
8
ssu rrna
8
rrna sequences
8
cryptophyte taxa
8
monophyletic lineage
8
clade cryptomonas
8
clade hemiselmis
8

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

Whole genome sequencing characterization of Clostridioides difficile from Bulgaria during the COVID-19 pandemic.

Diagn Microbiol Infect Dis

January 2025

National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria.

Increased incidence of Clostridioides difficile infections were documented in Bulgarian hospitals during COVID-19. WGS was performed on 39 isolates from seven hospitals during 2015-2022. Antimicrobial resistance and toxin genes were inferred from genomes.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!