Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The kinetics of a batch solid-liquid extraction of total phenolic compounds (PC) from milled grape seed (Vitis vinifera L. cv. "Frankovka") using 50% ethanol at different extraction temperatures (25-80°C) was studied. The maximum yield of PC was 0.13 kg(GAE)/kg(db) after 200 min of extraction in agitated vessel at 80°C. A new model based on the assumptions of a first order kinetics mechanism for the solid-liquid extraction and a linear equilibrium at the solid-liquid interface was developed. The model involves the concept of broken and intact cells in order to describe two successive extraction periods: a very fast surface washing process followed by slow diffusion of phenolic compounds from grape seeds to the solvent. The proposed model is suited to fit experimental data and to simulate the extraction of phenolic compounds, which was confirmed by the correlation coefficient (r≥0.965), the root mean square error (RMSE≤0.003 kg(GAE)/kg(db)) and the mean relative deviation modulus (E≤2.149%). The temperature influenced both equilibrium partition coefficients of phenolic compounds and transport properties, which is manifested by a relatively high value of activation energy (23-24) kJ/mol and by values of effective diffusivity in seed particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2012.09.087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!