Absolute rate constant measurements for the reactions of OH with cyclopentane and cycloheptane in the gas phase in 6-8 Torr of nitrogen from 233 to 351 K in the Harvard University High-Pressure Flow System (HPFS) are reported. Hydroxyl concentrations were measured using laser-induced fluorescence, and alkane concentrations were measured using Fourier transform infrared spectroscopy. Results were fit to a modified Arrhenius equation based on transition state theory (ignoring tunneling): k(T) = B e(-E(a)/T)/T(1 - e(-1.44ν(1)/T))(2)(1 - e(-1.44ν(2)/T)), with ν(1) and ν(2) bending frequencies set to 280 and 500 cm(-1) . Results were as follows for E(a) (K) and k (298) (10(-12) cm(3) s(-1)): cyclopentane, 460 ± 32, 4.85; cycloheptane, 319 ± 36, 9.84. This work represents the second absolute temperature-dependent rate constant measurement reported for cycloheptane, and the third absolute temperature-dependent rate constant measurement reported near room temperature for the reaction of OH and cyclopentane. For the title reactions, the reaction barriers reported here are in agreement with the reaction barrier previously reported for cyclohexane and considerably higher than the barrier previously reported for cyclo-octane, a result that is not predicted by our current understanding of hydrocarbon reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3048482DOI Listing

Publication Analysis

Top Keywords

rate constant
12
absolute rate
8
reaction cyclopentane
8
cyclopentane cycloheptane
8
233 351
8
concentrations measured
8
absolute temperature-dependent
8
temperature-dependent rate
8
constant measurement
8
measurement reported
8

Similar Publications

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Risks and rates, and the mathematical link between them.

Eur J Epidemiol

January 2025

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, H3A 1G1, Canada.

The risk over a given time span can be calculated as one minus the exponentiated value of the negative of the integral of the incidence density function (or hazard rate function) over that time span. This relationship is widely used but, in the few instances where textbooks have presented it, the derivations of it tend to be purely mathematical. I first review the historical contexts, definitions, distinctions and links.

View Article and Find Full Text PDF

Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite.

View Article and Find Full Text PDF

Diffusive evaporation dynamics in polymer solutions is ubiquitous.

Soft Matter

January 2025

SUPA and School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.

Recent theory and experiments have shown how the buildup of a high-concentration polymer layer at a one-dimensional solvent-air interface can lead to an evaporation rate that scales with time as and that is insensitive to the ambient humidity. Using phase field modelling we show that this scaling law constitutes a naturally emerging robust regime, diffusion-limited evaporation (DLE). This regime dominates the dynamical state diagram of the system, which also contains regions of constant and arrested evaporation, confirming and extending understanding of recent experimental observations and theoretical predictions.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!