Mechanisms of toxicity by carbon nanotubes.

Toxicol Mech Methods

Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico.

Published: March 2013

Carbon nanotubes (CNTs) consist of a family of carbon built nanoparticles, whose biological effects depend on their physical characteristics and other constitutive chemicals (impurities and functions attached). CNTs are considered the twenty first century material due to their unique physicochemical characteristics and applicability to industrial product. The use of these materials steadily increases worldwide and toxic outcomes need to be studied for each nanomaterial in depth to prevent adverse effects to humans and the environment. Entrance into the body is physical, and usually few nanoparticles enter the body; however, once there, they are persistent due to their limited metabolisms, so their removal is slow, and chronic cumulative health effects are studied. Oxidative stress is the main mechanism of toxicity but size, agglomeration, chirality as well as impurities and functionalization are some of the structural and chemical characteristic contributing to the CNTs toxicity outcomes. Among the many toxicity pathways, interference with cytoskeleton and fibrous mechanisms, cell signaling, membrane perturbations and the production of cytokines, chemokines and inflammation are some of the effects resulting from exposure to CNTs. The aim of this review is to offer an up-to-date scope of the effects of CNTs on biological systems with attention to mechanisms of toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.3109/15376516.2012.754534DOI Listing

Publication Analysis

Top Keywords

mechanisms toxicity
8
carbon nanotubes
8
cnts
5
effects
5
toxicity carbon
4
nanotubes carbon
4
nanotubes cnts
4
cnts consist
4
consist family
4
family carbon
4

Similar Publications

Madecassoside mitigates acute myocardial infarction injury by activating the PKCB/SPARC signaling pathway.

Acta Pharmacol Sin

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection.

View Article and Find Full Text PDF

Nonylphenol (NP) is a ubiquitous environmental endocrine disrupting chemical and oxidative stress inducer in biological systems. Resveratrol (RES) and Naringenin (NG) are phytochemicals possessing antioxidant properties and estrogenic activity. This study was conducted to investigate the toxicity of NP and the mitigating effects of RES and NG on NP toxicity in rats.

View Article and Find Full Text PDF

The aim of this study was to assess the critical quality attributes of parenteral nanoemulsion formulations by measuring several physicochemical parameters and linking them to their in vitro performance, illustrating how simplistic and routinely used approaches are insufficient for understanding a potential nanomedicine. Physicochemical characterization should encompass size and size distribution through at least two orthogonal techniques, such as dynamic light scattering (DLS) and electron microscopy, with added value from analytical ultracentrifugation. In vitro toxicity assessment was performed using three different assays to determine mitochondrial activity (WST-1), membrane integrity (lactate dehydrogenase release (LDH) assay), and cell viability (propidium iodide (PI) staining).

View Article and Find Full Text PDF

Huntington's disease (HD), a neurodegenerative disease, affects approximately 30,000 people in the United States, with 200,000 more at risk. Mitochondrial dysfunction caused by mutant huntingtin (mHTT) drives early HD pathophysiology. mHTT binds the translocase of mitochondrial inner membrane (TIM23) complex, inhibiting mitochondrial protein import and altering the mitochondrial proteome.

View Article and Find Full Text PDF

A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!