DNA methylation of cytosine residues constitutes a prominent epigenetic modification of the chromatin fiber which is locked in a transcriptionally inactive conformation leading to gene silencing. Plant developmental processes, as differentiation and proliferation, are accompanied by chromatin remodeling and epigenetic reprogramming. Despite the increasing knowledge gained on the epigenetic mechanisms controlling plant developmental processes, the knowledge of the DNA methylation regulation during relevant developmental programs in flowering plants, such as gametogenesis or embryogenesis, is very limited. The analysis of global DNA methylation levels has been frequently conducted by high performance capillary electrophoresis, and more recently also by ELISA-based assays, which provided quantitative data of whole organs and tissues. Nevertheless, to investigate the DNA methylation dynamics during plant development in different cell types of the same organ, the analysis of spatial and temporal pattern of nuclear distribution of 5-methyl-deoxy-cytidine (5mdC) constitutes a potent approach. In this work, immunolocalization of 5mdC on sections and subsequent confocal laser microscopy analysis have been applied for in situ cellular analysis of a variety of plant cells, tissues and organs with different characteristics, e.g. hardness, heterogeneity, cell accessibility, tissue compactness, etc.; the results demonstrated the versatility and feasibility of the approach for different plant samples, and revealed defined DNA methylation nuclear patterns associated with differentiation and proliferation events of various plant cell types and developmental programs. Quantification of 5mdC immunofluorescence intensity by image analysis software also permitted to estimate differences in global DNA methylation levels among different cells types of the same organ during development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12015DOI Listing

Publication Analysis

Top Keywords

dna methylation
28
5-methyl-deoxy-cytidine 5mdc
8
variety plant
8
plant developmental
8
developmental processes
8
differentiation proliferation
8
developmental programs
8
global dna
8
methylation levels
8
cell types
8

Similar Publications

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

Epigenetic variation in light of population genetic practice.

Nat Commun

January 2025

Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.

The evolutionary impact of epigenetic variation depends on its transgenerational stability and source - whether genetically determined, environmentally induced, or due to spontaneous, genotype-independent mutations. Here, we evaluate current approaches for investigating an independent role of epigenetics in evolution, pinpointing methodological challenges. We further identify opportunities arising from integrating epigenetic data with population genetic analyses in natural populations.

View Article and Find Full Text PDF

Aberrant promoter methylation of CTHRC1 gene and its clinicopathological characteristics in head and neck cancer.

Int J Oral Maxillofac Surg

January 2025

Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:

Head and neck squamous cell carcinoma (HNSCC) is genetically complex and difficult to treat. Detection in the early stage is challenging, leading to diagnosis at advanced stages with limited treatment options. This study examined the collagen triple helix repeat containing 1 gene (CTHRC1) as a potential biomarker and therapeutic target in HNSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!