Objective: To establish a new method for sperm sorting by imitating the physiological process of sperm-cervical mucus interaction on the microfluidic chip.
Methods: We designed a microfluidic chip to imitate the physiological process of natural sperm sorting in the microchannel based on the interaction between sperm and cervical mucus, and obtained motile sperm after the interaction. Meanwhile, we established an integrated real-time sperm detection reservoir on this chip to determine sperm parameters using the computer-assisted sperm analysis system. We analyzed 30 samples using both microfluidic and swim-up methods, and compared the results with those obtained before sorting.
Results: The rate of grade a + b sperm, the rate of morphologically normal sperm, straight-line velocity (VSL), average path velocity (VAP) and straightness (STR) were (29.78 +/- 11.24)%, (8.00 +/- 5.19)%, (18.89 +/- 4.90) microm/s, (26.84 +/- 5.13) microm/s and (70.15 +/- 7.61)%, respectively, before sorting, (71.65 +/- 11.18)%, (14.95 +/- 6.79)%, (24.14 +/- 5.95) microm/s, (32.61 +/- 6.36) microm/s and (73.87 +/- 9.34)%, respectively, after swim-up sorting, and (92.37 +/- 6.33)%, (23.33 +/- 7.67)%, (34.03 +/- 16.78) microm/s, (38.73 +/- 16.40) microm/s and (84.91 +/- 12.56)%, respectively, after sorting on the microfluidic chip. The sperm parameters obtained before sorting showed statistically significant differences from those obtained on the chip (P < 0.01) and by the swim-up method (P < 0.05).
Conclusion: Imitation of the physiological interaction between sperm and cervical mucus on the microfluidic chip helped the realization of both the natural sorting and real-time analysis of sperm. The quality of the sperm sorted on the microfluidic chip is significantly better than that of the sperm before sorting and sorted by the swim-up method. This has prepared the ground for imitating the fertilization process under the physiological condition on the microfluidic chip.
Download full-text PDF |
Source |
---|
ACS Omega
January 2025
Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.
The microfluidic-based point-of-care (POC) diagnostic tool has garnered significant interest in recent years, offering rapid and cost-effective disease detection. There is a growing trend toward integrating microfluidic platforms with biosensors, aligning lab-on-a-chip technologies with POC diagnostic devices. Despite numerous efforts to incorporate biosensors into microfluidic systems, researchers have performed very limited investigations on the stability of biomarker detection when biosensors operate under microfluidic shear flow conditions.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China. Electronic address:
Clinical bacteria pose a significant public health threat, underscoring the need for reliable and rapid diagnostic methods for early disease detection, which can facilitate patient recovery. Current diagnostic methods for rapid pathogen detection often take hours to days and require numerous reagents and lengthy protocols. Microfluidic chip system offers a promising solution for clinical microbiology detection by reducing detection time with minimal setup and providing a point-of-care solution for patients.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal. Electronic address:
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
H5N1 flu is a highly virulent and variable subtype of influenza with significant epidemic and pandemic potential. In this study, we introduce a novel, maskless, and rapid manufacturing process for a microfluidic chip integrated with electrodes for the quantitative detection of H5N1-DNA sequences. This detection leverages a catalytic redox-recycling signal via a novel Fe₃O₄@TMU-8 nanocomposite, which facilitates the turnover of the oxidation state of [Ru(NH₃)₆]³⁺, thereby amplifying the electrochemical signal output.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!