This work focuses on the conformational and dynamic properties of the antimicrobial peptides (AMPs), BP100 and pepR, when confined within model membrane systems. Brownian dynamics (BD) simulations of a coarse-grained model of each respective peptide in an environment reproducing the phospholipid bilayer were carried out. Simple mean-field potentials were used to reproduce three physically different model phosphatidylcholine (PC) membrane systems. Based on the simplicity of the peptide-membrane models used, 1 micros simulations were performed. With the appropriate choice of parameters, the structure and dynamics of each peptide were recovered from each of the simulated BD trajectories. BP100 was observed to adopt a alpha-helical conformation when confined in each PC membrane. For pepR under the same conditions, the formation of an N-terminal alpha-helix was detected, whereas the C-terminus appeared to be less ordered. The dynamic properties of each peptide were characterized in terms of local and global motions. BP100 tended to localize with no preferred orientation approximately halfway across each membrane leaflet, whereas pepR localized near the membrane core with no preferred orientation. Overall, the peptide dynamics were found to vary according to the size of the peptide, as well as the width of the membrane environment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.22075DOI Listing

Publication Analysis

Top Keywords

membrane systems
12
antimicrobial peptides
8
bp100 pepr
8
model membrane
8
brownian dynamics
8
dynamics simulations
8
simulations coarse-grained
8
coarse-grained model
8
dynamic properties
8
preferred orientation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!