Energy-dominated local carbon emissions in Beijing 2007: inventory and input-output analysis.

ScientificWorldJournal

State Key Laboratory of Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.

Published: May 2013

For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO(2)-eq, of which energy-related CO(2) emissions comprise 90.49%, non-energy-related CO(2) emissions 6.35%, CH(4) emissions 2.33%, and N(2)O emissions 0.83%, respectively. In terms of energy-related CO(2) emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E + 07 t CO(2)-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO(2)-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488394PMC
http://dx.doi.org/10.1100/2012/923183DOI Listing

Publication Analysis

Top Keywords

emissions
13
ghg emissions
12
final demand
12
co2 emissions
12
emissions embodied
12
emissions beijing
8
input-output analysis
8
energy-related co2
8
local emissions
8
embodied final
8

Similar Publications

Assessing blood metal levels in house sparrows (Passer domesticus) across urban and rural habitats in Meknes.

Environ Sci Pollut Res Int

January 2025

Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco.

This study investigates the concentration of heavy metals lead (Pb), cadmium (Cd), and zinc (Zn) in the blood of house sparrows (Passer domesticus) across various urban habitats in Meknes, Morocco. Fifty adult sparrows were captured from five distinct sites, including industrial, high-traffic, and rural areas. Blood samples were specifically analyzed for Pb, Cd, and Zn using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES).

View Article and Find Full Text PDF

Unlocking 3D printing technology for microalgal production and application.

Adv Biotechnol (Singap)

October 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.

Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.

View Article and Find Full Text PDF

A review of state-of-the-art resolution improvement techniques in SPECT imaging.

EJNMMI Phys

January 2025

Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.

Single photon emission computed tomography (SPECT), a technique capable of capturing functional and molecular information, has been widely adopted in theranostics applications across various fields, including cardiology, neurology, and oncology. The spatial resolution of SPECT imaging is relatively poor, which poses a significant limitation, especially the visualization of small lesions. The main factors affecting the limited spatial resolution of SPECT include projection sampling techniques, hardware and software.

View Article and Find Full Text PDF

From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects?

Adv Biotechnol (Singap)

October 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.

The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.

View Article and Find Full Text PDF

Oligorecurrent prostate cancer (PCa) can be treated with metastasis-directed therapy (MDT), which may be performed using radioguided surgery (RGS) as an experimental approach. These procedures have shown promising outcomes, largely due to the high lesion detection rate of positron emission tomography/computed tomography (PET/CT). We present a case series of patients who underwent RGS following robot-assisted radical prostatectomy (RARP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!