NCBI Epigenomics: what's new for 2013.

Nucleic Acids Res

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892, USA.

Published: January 2013

AI Article Synopsis

Article Abstract

The Epigenomics resource at the National Center for Biotechnology Information (NCBI) has been created to serve as a comprehensive public repository for whole-genome epigenetic data sets (www.ncbi.nlm.nih.gov/epigenomics). We have constructed this resource by selecting the subset of epigenetics-specific data from the Gene Expression Omnibus (GEO) database and then subjecting them to further review and annotation. Associated data tracks can be viewed using popular genome browsers or downloaded for local analysis. We have performed extensive user testing throughout the development of this resource, and new features and improvements are continuously being implemented based on the results. We have made substantial usability improvements to user interfaces, enhanced functionality, made identification of data tracks of interest easier and created new tools for preliminary data analyses. Additionally, we have made efforts to enhance the integration between the Epigenomics resource and other NCBI databases, including the Gene database and PubMed. Data holdings have also increased dramatically since the initial publication describing the NCBI Epigenomics resource and currently consist of >3700 viewable and downloadable data tracks from 955 biological sources encompassing five well-studied species. This updated manuscript highlights these changes and improvements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531100PMC
http://dx.doi.org/10.1093/nar/gks1171DOI Listing

Publication Analysis

Top Keywords

epigenomics resource
12
data tracks
12
ncbi epigenomics
8
data
7
resource
5
ncbi
4
epigenomics what's
4
what's 2013
4
2013 epigenomics
4
resource national
4

Similar Publications

Single-cell analysis of the epigenome and 3D chromatin architecture in the human retina.

bioRxiv

December 2024

Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA.

Most genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and retinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells.

View Article and Find Full Text PDF

Molecular subtypes, such as defined by The Cancer Genome Atlas (TCGA), delineate a cancer's underlying biology, bringing hope to inform a patient's prognosis and treatment plan. However, most approaches used in the discovery of subtypes are not suitable for assigning subtype labels to new cancer specimens from other studies or clinical trials. Here, we address this barrier by applying five different machine learning approaches to multi-omic data from 8,791 TCGA tumor samples comprising 106 subtypes from 26 different cancer cohorts to build models based upon small numbers of features that can classify new samples into previously defined TCGA molecular subtypes-a step toward molecular subtype application in the clinic.

View Article and Find Full Text PDF

Systematic functional characterization of non-coding regulatory SNPs associated with central obesity.

Am J Hum Genet

January 2025

Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China. Electronic address:

Central obesity is associated with higher risk of developing a wide range of diseases independent of overall obesity. Genome-wide association studies (GWASs) have identified more than 300 susceptibility loci associated with central obesity. However, the functional understanding of these loci is limited by the fact that most loci are in non-coding regions.

View Article and Find Full Text PDF

Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the ACRs showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining diverse cell identities.

View Article and Find Full Text PDF

Comprehensive multi-tissue epigenome atlas in sheep: A resource for complex traits, domestication, and breeding.

Imeta

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Afairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou China.

Article Synopsis
  • The study highlights the need for a comprehensive functional annotation of the sheep genome to better understand agronomic traits, particularly regarding tail fat weight.
  • Researchers created an extensive dataset combining transcriptomic, epigenomic, whole-genome, and phenotypic data across multiple sheep breeds, identifying over 750,000 functional elements, with 60% being novel.
  • Key findings include tissue-specific regulatory elements related to sensory and immune functions and a specific genetic variant linked to tail fat deposition, paving the way for future complex trait studies in sheep.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!