Noninvasive imaging of heart chamber in Drosophila with dual-beam optical coherence tomography.

J Biophotonics

Department of Electrical Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan.

Published: September 2013

The heart chamber of an adult Drosophila is approximately 2 mm long and 0.5 mm wide, and the interwall separation of different heart portions during systole and diastole range from tens of micrometers to hundreds of micrometers. Furthermore, the heart chamber has a curved structure, which results in the larger differences in depth between the different heart portions. However, applying the wavelength calibration process before Fourier transform in an optical coherence tomography (OCT) system may cause degradation in system sensitivity and longitudinal resolution when the optical path difference between the reference and sample arms increases, which makes imaging the entire heart chamber difficult with OCT system. Additionally, since the heartbeat rate of Drosophila is approximately 6 beats/s, a high-speed OCT system is necessary to record the dynamics of the heat beats. In this study, we propose a new approach to visualize the entire heart chamber including the conical chamber and four ostia portions, and to observe the retrograde and anterograde beats. A buffered Fourier-domain mode-locked (FDML) laser is implemented to provide a high imaging speed. Two output ports of the buffered FDML laser are used simultaneously to scan the different heart portions of Drosophila, and the effective A-scan rate of the OCT system can be doubled. Then, the two scanned images are merged into a single B-mode scan. Furthermore, with dual-beam OCT system, the beating behaviors of the different heart portions from 7-day-old and 21-day-old flies are compared.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201200164DOI Listing

Publication Analysis

Top Keywords

heart chamber
20
oct system
20
heart portions
16
heart
9
optical coherence
8
coherence tomography
8
entire heart
8
fdml laser
8
chamber
6
system
6

Similar Publications

Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).

View Article and Find Full Text PDF

Purpose: Increasing life expectancy and advances in cancer treatment will lead to more patients needing both radiation therapy (RT) and cardiac implantable electronic devices (CIEDs). CIEDs, including pacemakers and defibrillators, are essential for managing cardiac arrhythmias and heart failure. Telemetric monitoring of CIEDs checks battery status, lead function, settings, and diagnostic data, thereby identifying software deviations or damage.

View Article and Find Full Text PDF

Background: Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder caused by variants in the gene. It is associated with periodic paralysis, dysmorphic features and cardiac arrhythmias. The syndrome exhibits incomplete penetrance, leading to a broad spectrum of clinical manifestations, making diagnosis challenging.

View Article and Find Full Text PDF

An infant with DiGeorge syndrome, multiple comorbidities, and truncus arteriosus type II underwent repair complicated by heart block necessitating placement of a dual-chamber bipolar pacing system with right ventricular leads and subsequent resynchronization with placement of left ventricular apical pacing leads. Resynchronization therapy improved QRS duration from 180 ms to 100 ms and ejection fraction from 25% to 54% over the course of 4 weeks with gradual return to normal function and eventual discharge.

View Article and Find Full Text PDF

Right ventricular (RV) dysfunction after biventricular repair is critical in most adults with congenital heart disease (ACHD). Conventional 2D magnetic resonance imaging (MRI) measurement is considered as a 'gold standard' for RV evaluation; however, addition information on ACHD after biventricular repair is sometimes required. The reasons why adjunctive information is required is as follows: (I) to evaluate the severity of cardiac burden in symptomatic patients with normal RV size and ejection fraction (EF), (II) to determine the optimal timing of invasive treatments in asymptomatic ones, and (III) to detect proactively a potential cardiac burden leading to ventricular deterioration, from a fluid dynamics perspective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!