Laser and steady-state photolysis, sensitized by 2,4,6-triphenylpyrylium tetrafluoroborate (TPP(+)BF(4)(-)), of 4-methoxybenzyl ethers [4-CH(3)O-C(6)H(4)CH(OR(1))R, 1a: R = H, R(1) = CH(3); 1b: R = H, R(1) = C(CH(3))(3); 1c: R = CH(3), R(1) = C(CH(3))(3); 1d: R = 4-CH(3)O-C(6)H(4), R(1) = CH(3)] was carried out in CH(3)CN in the presence of oxygen. In particular, steady-state irradiation of 1a, b and d produced benzylic alcohols (together with a small amount of acetamide for 1a and 1b) and the oxidation carbonyl compounds (esters and ketones); 4-methoxy-α-methylbenzyl alcohol was the only product observed with 1c. Time-resolved investigations of 1c and 1d gave evidence of the intermediate benzylic carbocation, coming from the ether radical cation formed within the laser pulse by an electron transfer process from the ether to the TPP(+) excited state. These results suggested that, besides the deprotonation of the benzyl carbon, the cleavage of the C-OR(1) bond is also operative in the reaction pathways of the ether radical cation. The comparison of these results with those obtained in the photolysis of 1c with the uncharged 9,10-dicyanoanthracene (DCA) upholds a particular behavior of TPP(+)BF(4)(-), probably due to the specific electrostatic interactions of BF(4)(-) with the radical cation. This is also supported by quantum mechanical calculation results performed at the B3LYP/6-31G(d) level to obtain the charge and spin density distributions of radical cations, free and complexed with BF(4)(-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2pp25335f | DOI Listing |
J Org Chem
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp)-H with dichloromethyl radical (·CHCl), which was generated by photoreduction of chloroform.
View Article and Find Full Text PDFL. is an aromatic spice, utilized as an original and peculiar flavoring ingredient in a variety of culinary applications and pharmaceuticals. Black seed ( L.
View Article and Find Full Text PDFMolecules
December 2024
Department of Molecular Food Chemistry and Development, Institute of Food and One Health, Leibniz University Hannover, 30167 Hannover, Germany.
This study systematically investigated the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical induced oxidation of all dimeric C4-C8 linked B-type procyanidins (PCs) B1-B4 to maximise the formation of the oxidation products using a Design of Experiments (DoE) approach. The C4-C8 linked B1 and B2 formed the A1 () and A2 () (/ 575 [M-H]) with an ether bridge between C2u-O-C7t as expected. Interestingly, the oxidation of the C4-C8 linked dimers B3 and B4 yielded for each two main oxidation products with / 575 [M-H].
View Article and Find Full Text PDFMolecules
December 2024
Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.
Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!