Purpose: Depending on the location and extent of the meniscectomy, loading on the tibial articular cartilage alters. The main purpose of the present study was to analyze the loading on the tibial articular cartilage following medial meniscectomy performed in various location and extent, as well as in the healthy knee, via finite element analyses on the solid models.

Methods: Totally, 11 finite element solid models, including the reference model, were created to investigate the effect of location (anterior, posterior, longitudinal) and extent of meniscectomy (25, 50, 75, and 100 %) on loading of tibial articular cartilage.

Results: Maximum equivalent stress of the tibial cartilage was measured 0.86 Megapascal in the reference model and increased approximately by 78 % in 25 % meniscectomy group, 177.9 % in 50 %, 473.8 % in 75 % meniscectomy group, and 752.6 % in total meniscectomy. When only the amount of meniscal tissue removed was considered ignoring the location of meniscectomy, no significant difference was found in the amount of tissue excised between 25 % meniscectomy and 50 % meniscectomy, as well as between 75 % meniscectomy and total meniscectomy.

Conclusion: In all meniscectomy models, the loadings on tibial articular cartilage increased. Except total meniscectomy, the highest impact was observed in longitudinal 75 % meniscectomy. During the surgical treatment, the contributions of menisci on load absorption by increasing the tibiofemoral contact area must be considered. In fact, the increase in the rate of loading on tibial articular cartilage depends on according to type and amount of meniscectomy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-012-2318-6DOI Listing

Publication Analysis

Top Keywords

tibial articular
24
loading tibial
20
articular cartilage
20
meniscectomy
15
finite element
12
cartilage medial
8
medial meniscectomy
8
location extent
8
extent meniscectomy
8
reference model
8

Similar Publications

Outcomes of All-Inside Arthroscopic ACL Reconstruction with Lateral Extra-Articular Tenodesis (ACLR + LET).

Indian J Orthop

January 2025

Department of Orthopaedics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneshwar, Odisha 751024 India.

Background: Anatomic single-bundle ACL reconstruction (ACLR) produces good results when the graft and tunnel are positioned in the anatomic footprint on the femoral and tibial insertion sites in a more oblique orientation. The of the knee and its biomechanical role in controlling rotational laxity, internal rotation, and pivot shift has led to adding adjunctive procedures like extra-articular augmentation and lateral extra-articular tenodesis (LET) to decrease rotational laxity. We prospectively analyzed young adults with rotational instability and generalized laxity undergoing an arthroscopic single bundle ACLR with an additional LET procedure.

View Article and Find Full Text PDF

Background: Hemophilic arthritis (HA) is associated with significant changes in the morphology of mature knee joints due to abnormal growth plate development. Previous studies have established marked distinctions between the femur and tibia of subjects with Haemophilia and those with osteoarthritis (OA). This study explored the morphological characteristics of the patella and patellofemoral joint in subjects with Haemophilia.

View Article and Find Full Text PDF

Purpose: Lateral unicompartmental knee arthroplasty (UKA) is relatively less common than medial UKA. There has been no comparative analysis of the constitutional phenotypes of knees that underwent medial and lateral UKA. Therefore, this study aimed to compare the Coronal Plane Alignment of the Knee (CPAK) classification of knees that underwent medial and lateral UKA.

View Article and Find Full Text PDF

An eight-year-old spayed female Abyssinian cat presented with lameness. Palpation revealed swelling, heat, and a reduced range of motion in the stifle and tarsal joints in both hind limbs. A radiographic examination of both hind limbs revealed periosteal proliferation from the distal tibia to the tarsal and metatarsal bones, which suggested hypertrophic osteopathy.

View Article and Find Full Text PDF

Background: Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!