The objective of this paper is to present observations, results from monitoring measurements, and preliminary conclusions about the development of patterns and structures during the first 5 years of development of an artificial catchment starting from point zero. We discuss the high relevance of initial system traits and external events for the system development and draw conclusions for further research. These investigations as part of a Collaborative Research Center, aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying an initial, probably less complex ecosystem. Therefore, intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, vegetation dynamics, water chemistry, and element budgets. During the first 5 years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover, and the unconsolidated sandy substrate. The transformation of the initial geosystem into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared with the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Long-term monitoring of initial ecosystems may provide important data and parameters on processes and the crucial role of spatial and temporal structures and patterns to solve these problems. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed, and defined boundary conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-012-2998-xDOI Listing

Publication Analysis

Top Keywords

structures patterns
16
artificial catchment
12
initial
10
formation structures
8
initial development
8
development artificial
8
feedback mechanisms
8
spatial temporal
8
temporal structures
8
vegetation dynamics
8

Similar Publications

Background: Preteen girls of lower socioeconomic position are at increased risk of physical inactivity. Parental support, particularly from mothers, is positively correlated with girls' physical activity levels. Consequently, family-based interventions are recognized as a promising approach to improve young people's physical activity.

View Article and Find Full Text PDF

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

Development and psychometric properties of a quality of life assessment tool for Chinese patients undergoing intravitreal injection (IVI-QoL-23).

Retina

January 2025

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.

Purpose: To develop and assess the psychometric properties of a quality of life (QoL) assessment tool for Chinese patients treated with intravitreal injection (IVI) of anti-vascular endothelial growth factor (anti-VEGF).

Methods: We developed a 31-item IVI-QoL questionnaire using semi- structured patient interviews and expert panel consultation, drawing on a study of the literature. After pretesting on a subset of patients undergoing IVI, the questionnaire was pared down to 23 items.

View Article and Find Full Text PDF

Thickness Dependent Structural Transition in Ph-BTBT-10 Thin Films and Stabilization of the Ubiquitous Interface Bilayer.

ACS Appl Mater Interfaces

January 2025

Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Carrer dels Til·lers, s/n, Bellaterra, 08193 Barcelona, Spain.

The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.

View Article and Find Full Text PDF

Inspired by classical works, when constructing local relationships in point clouds, there is always a geometric description of the central point and its neighboring points. However, the basic geometric representation of the central point and its neighborhood is insufficient. Drawing inspiration from local binary pattern algorithms used in image processing, we propose a novel method for representing point cloud neighborhoods, which we call Point Cloud Local Auxiliary Block (PLAB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!