Shedding light on the bonding, photophysical and magnetotropic properties of triangular Pt3 complexes and their "open-face" TlPt3 half-sandwiches.

Dalton Trans

Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece.

Published: February 2013

The molecular and electronic structures, stabilities, bonding features, magnetotropic and spectroscopic properties of the triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters and their [(μ(3)-Tl)Pt(3)(μ(2)-L)(3)(L')(3)](+) (L = CO, SnR(2), SnH(2), SiR(2), SiH(2), CH(3)CN, PH(2), C(6)F(5), SO(2) or HCN and L' = CO, PH(3), CH(3)CN, C(6)F(5), HCN) half-sandwiches have been studied by means of density functional theory (DFT) calculations. It is found that the optimized Pt-Pt intermetallic distances in the clusters are well below the sum of the van der Waals radii of the two Pt metal atoms (3.44 Å). The triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters trap a thallium(I) cation forming stable "open face" half-sandwiches. The distance between Tl(I) and the centroids of the Pt(3) rings in the half-sandwiches is calculated to be within the range 2.52-2.86 Å. Energy decomposition analysis (EDA) calculations using a dispersion corrected B3LYP-D functional reveal that the interaction of Tl(I) with the Pt(3) ring in the half-sandwiches is dominated by the interplay of electrostatic and orbital interactions with a small contribution from dispersion forces as well. In addition, charge decomposition analysis (CDA) calculations indicate strong donor-acceptor interactions between Tl(I) and the rings. The estimated proton affinities (PAs) of the triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters illustrate their relatively strong π-basic character. Furthermore, an excellent linear relationship between the PAs of the Pt(3)(μ(2)-L)(3)(L')(3) clusters and the bond dissociation energies (D(0)) of the [(μ(3)-Tl)Pt(3)(μ(2)-L)(3)(L')(3)](+) half-sandwiches was established. The magnetotropicity of these systems was studied by calculating the NICS(zz)-scan profiles. The spectroscopic properties of the triangular Pt(3) clusters and their TlPt(3) half-sandwiches were studied by means of TDDFT calculations. The simulated absorption spectra are dominated by strong absorption bands in the UV region. The emission band maxima of the triangular Pt(3) clusters are predicted to lie within the IR region. In order to gain insight into the phosphorescence process of these systems, we have optimized their first triplet excited state, T(1). The estimated deep HOMO energy for these compounds makes them promising candidates for use as "hole" blocking materials in LED devices. Also, it is expected to exhibit small non-radiative decay rate constants due to their relatively large S(0)-T(1) energy difference making them suitable PHOLED emitters or dopants in organic polymer matrices constituting the recombination layer of an OLED device.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt32507aDOI Listing

Publication Analysis

Top Keywords

pt3μ2-l3l'3 clusters
16
properties triangular
12
triangular pt3
12
triangular pt3μ2-l3l'3
12
tlpt3 half-sandwiches
8
spectroscopic properties
8
half-sandwiches studied
8
decomposition analysis
8
pt3 clusters
8
half-sandwiches
7

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Objective: Understanding healthcare-seeking propensity is crucial for optimizing healthcare utilization, especially for patients with chronic conditions like hypertension or diabetes, given their substantial burden on healthcare systems globally. This study aims to evaluate hypertensive or diabetic patients' healthcare-seeking propensity based on the severity of symptoms, categorizing symptoms as either major or minor. It also explores factors influencing healthcare-seeking propensity and examines whether healthcare-seeking propensity affects healthcare utilization and preventable hospitalizations.

View Article and Find Full Text PDF

Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies.

Oncogene

January 2025

Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.

Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients.

View Article and Find Full Text PDF

Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!