Oxidative stress is implicated in hyperglycemia-induced alterations in cell signaling pathways. We examined the toxicity of high glucose in primary rat hepatocytes and its amelioration by naringenin. Incubation of hepatocytes with 40 mM glucose for 1.5 h exhibited significant decrease in cell viability confirmed by MTT reduction and Alamar blue assay. At the same time primary rat hepatocytes exhibited significant decrease in mitochondrial membrane potential indicating organelle dysfunction. Enhanced translocation of Cyt-c from mitochondria to cytosol and AIF/Endo-G from mitochondria to nucleus, activation of caspase-9/3, DNA damage, and chromatin condensation were observed in glucose-stressed hepatocytes, indicating the involvement of mitochondrial pathway in high glucose-induced apoptosis. Transcript levels of antioxidant enzymes were significantly altered along with corresponding changes in their enzymatic activities. The level of intracellular antioxidant glutathione as well as superoxide dismutase, catalase, and glutathione peroxidase activities were observed to be significantly decreased in hepatocytes treated with high concentration of glucose. Naringenin, a flavanone, was effective in preventing loss of cell viability, reactive oxygen species generation, and decline in antioxidant defense. Translocation of AIF, Endo-G, and Cyt-c from mitochondria was also inhibited by naringenin in glucose-stressed cells. Messenger RNA expression of anti-apoptotic and apoptotic genes, externalization of phosphatidyl serine, DNA damage, chromatin condensation, and sub-diploid cell population were effectively altered by naringenin indicating its anti-apoptotic potential in vitro. Our data suggests that naringenin can prevent apoptosis induced by high glucose through scavenging of reactive oxygen species and modulation of mitochondria-mediated apoptotic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10495-012-0781-7 | DOI Listing |
Clin Exp Nephrol
January 2025
Department of Geriatrics, Liuzhou People's Hospital, Wenchang No. 8 Road, Liuzhou, 545006, Guangxi, China.
Sci Rep
January 2025
Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.
Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China.
Aim: Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
Endothelial cells and high glucose-induced endothelial dysfunction are the common origin of chronic diabetic complications such as retinopathy, nephropathy, and cardiomyopathy. Yet their common origins, the vascular manifestations of such complications are different. We examined the basal heterogeneity between microvascular endothelial cells(MECs) from the retina, kidneys, and heart, as well as their differential responses to hyperglycemia in diabetes.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
Diabetic kidney disease (DKD), a.k.a diabetic nephropathy, is a leading cause of end-stage renal disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!