Purpose: The aim of this study was to compare the detection of brain metastases at 3 T using a 32-channel head coil with 2 different 3-dimensional (3D) contrast-enhanced sequences, a T1-weighted fast spin-echo-based (SPACE; sampling perfection with application-optimized contrasts using different flip angle evolutions) sequence and a conventional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence.

Materials And Methods: Seventeen patients with 161 brain metastases were examined prospectively using both SPACE and MP-RAGE sequences on a 3-T magnetic resonance system. Eight healthy volunteers were similarly examined for determination of signal-to-noise ratio (SNR) values. Parameters were adjusted to equalize acquisition times between the sequences (3 minutes and 30 seconds). The order in which sequences were performed was randomized. Two blinded board-certified neuroradiologists evaluated the number of detectable metastatic lesions with each sequence relative to a criterion standard reading conducted at the Gamma Knife facility by a neuroradiologist with access to all clinical and imaging data.

Results: In the volunteer assessment with SPACE and MP-RAGE, SNR (10.3 ± 0.8 vs 7.7 ± 0.7) and contrast-to-noise ratio (0.8 ± 0.2 vs 0.5 ± 0.1) were statistically significantly greater with the SPACE sequence (P < 0.05). Overall, lesion detection was markedly improved with the SPACE sequence (99.1% of lesions for reader 1 and 96.3% of lesions for reader 2) compared with the MP-RAGE sequence (73.6% of lesions for reader 1 and 68.5% of lesions for reader 2; P < 0.01).

Conclusions: A 3D T1-weighted fast spin echo sequence (SPACE) improves detection of metastatic lesions relative to 3D T1-weighted gradient-echo-based scan (MP-RAGE) imaging when implemented with a 32-channel head coil at identical scan acquisition times (3 minutes and 30 seconds).

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0b013e318277b1aaDOI Listing

Publication Analysis

Top Keywords

lesions reader
16
brain metastases
12
32-channel head
12
head coil
12
detection brain
8
t1-weighted fast
8
space mp-rage
8
acquisition times
8
minutes seconds
8
metastatic lesions
8

Similar Publications

Detectability of Al18F-NOTA-HER2-BCH PET for Nodal Metastases in Patients With HER2-Positive Breast Cancer.

Clin Nucl Med

January 2025

From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine; Peking University Cancer Hospital and Institute, Beijing, China.

Purpose: The aim of this study was to compare Al18F-NOTA-HER2-BCH and 18F-FDG for detecting nodal metastases in patients with HER2-positive breast cancer on PET/CT.

Patients And Methods: In this retrospective study, 62 participants with HER2-positive breast cancer underwent both Al18F-NOTA-HER2-BCH and 18F-FDG PET/CT. Participants were pathologically confirmed as HER2-positive (IHC 3+ or IHC 2+ with gene amplification on FISH).

View Article and Find Full Text PDF

To evaluate the diagnostic accuracy of artificial intelligence (AI) assisted radiologists and standard double-reading in real-world clinical settings for rib fractures (RFs) detection on CT images. This study included 243 consecutive chest trauma patients (mean age, 58.1 years; female, 166) with rib CT scans.

View Article and Find Full Text PDF

Rationale And Objectives: The aim of this study was to compare the image quality of a deep learning (DL)-accelerated volumetric interpolated breath-hold examination (VIBE) sequence with a standard (ST) VIBE sequence in assessing the uterus.

Materials And Methods: Between April and December 2023, a total of 61 female patients (aged 41 ± 14 years) who were referred for an magnetic resonance imaging (MRI) of the pelvis were included in this prospective study, after providing informed consent. All examinations were performed with a 1.

View Article and Find Full Text PDF

Purpose: Ovarian-Adnexal Reporting and Data System (O-RADS) US provides a standardized lexicon for ovarian and adnexal lesions, facilitating risk stratification based on morphological features for malignancy assessment, which is essential for proper management. However, systematic determination of inter-reader reliability in O-RADS US categorization remains unexplored. This study aimed to systematically determine the inter-reader reliability of O-RADS US categorization and identify the factors that affect it.

View Article and Find Full Text PDF

Introduction: SPLASH (NCT04647526) is a multicenter phase III trial evaluating the efficacy and safety of [Lu]Lu-PNT2002 radioligand therapy in metastatic castration-resistant prostate cancer (mCRPC). This study leveraged a lead-in phase to assess tissue dosimetry and evaluate preliminary safety and efficacy, prior to expansion into a randomized phase. Here we report those results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!