Fabricating a reversible and regenerable Raman-active substrate with a biomolecule-controlled DNA nanomachine.

J Am Chem Soc

Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China.

Published: December 2012

A DNA configuration switch is designed to fabricate a reversible and regenerable Raman-active substrate. The substrate is composed of a Au film and a hairpin-shaped DNA strand (hot-spot-generation probes, HSGPs) labeled with dye-functionalized silver nanoparticles (AgNPs). Another ssDNA that recognizes a specific trigger is used as an antenna. The HSGPs are immobilized on the Au film to draw the dye-functionalized AgNPs close to the Au surface and create an intense electromagnetic field. Hybridization of HSGP with the two arm segments of the antenna forms a triplex-stem structure to separate the dye-functionalized AgNPs from the Au surface, quenching the Raman signal. Interaction with its trigger releases the antenna from the triplex-stem structure, and the hairpin structure of the HSGP is restored, creating an effective "off-on" Raman signal switch. Nucleic acid sequences associated with the HIV-1 U5 long terminal repeat sequences and ATP are used as the triggers. The substrate shows excellent reversibility, reproducibility, and controllability of surface-enhanced Raman scattering (SERS) effects, which are significant requirements for practical SERS sensor applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568521PMC
http://dx.doi.org/10.1021/ja308875rDOI Listing

Publication Analysis

Top Keywords

reversible regenerable
8
regenerable raman-active
8
raman-active substrate
8
dye-functionalized agnps
8
triplex-stem structure
8
raman signal
8
fabricating reversible
4
substrate
4
substrate biomolecule-controlled
4
biomolecule-controlled dna
4

Similar Publications

Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis.

J Cachexia Sarcopenia Muscle

February 2025

Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.

Background: Regenerative capacity of skeletal muscles decreases with age. Deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) is associated with skeletal muscle weakness as well as epithelial cell senescence. However, whether and how CFTR plays a role in skeletal muscle regeneration and aging were unclear.

View Article and Find Full Text PDF

3D bioprinted dynamic bioactive living construct enhances mechanotransduction-assisted rapid neural network self-organization for spinal cord injury repair.

Bioact Mater

April 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.

View Article and Find Full Text PDF

Herein, we present the development and evaluation of a molecularly imprinted polymer (MIP) sensor for the sensitive and selective detection of -nitrosodimethylamine (NDMA) in aqueous environments. MIP coatings over electrochemically active electrodes enable NDMA detection with a notably low detection limit of 1.16 ppb.

View Article and Find Full Text PDF

Resolving the Ambiguity of Thermal Reversion in a Nonconjugated Monocyclic Diene-Based Photoswitch for Rechargeable Solar Thermal Batteries.

J Phys Chem A

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.

We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.

View Article and Find Full Text PDF

Interleukin-1 Receptor-Associated Kinase-3 Aggravates Neuroinflammatory Injury After Intracerebral Hemorrhage via Activation NF-κB/IL-17A Pathway in Mice.

J Inflamm Res

January 2025

Neuromedicine Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.

Background: Neuroinflammatory reactions are crucial factors in secondary brain damage following intracerebral hemorrhage (ICH). Although previous studies have shown that IRAK3 is involved in immune responses, the potential effects of IRAK3 on ICH remain unclear.

Methods: Collagenase IV-induced ICH mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!