The electrochemical measurement of dopamine (DA), in phosphate buffer solution (pH 7.4), with a limit of detection (LOD) of ∼5 pM in 50 μL (∼ 250 attomol) is achieved using a band electrode comprised of a sparse network of pristine single-walled carbon nanotubes (SWNTs), which covers <1% of the insulating substrate. The SWNT electrodes are deployed as amperometric (anodic) detectors in microfluidic cells, produced by microstereolithography, designed specifically for flow injection analysis (FIA). The flow cells, have a channel (duct) geometry, with cell height of 25 μm, and are shown to be hydrodynamically well-defined, with laminar Poiseuille flow. In the arrangement where solution continuously flows over the electrode but the electrode is only exposed to the analyte for short periods of time, the SWNT electrodes do not foul and can be used repeatedly for many months. The LOD for dopamine (DA), reported herein, is significantly lower than previous reports using FIA-electrochemical detection. Furthermore, the SWNT electrodes can be used as grown, i.e., they do not require chemical modification or cleanup. The extremely low background signals of the SWNT electrodes, as a consequence of the sparse surface coverage and the low intrinsic capacitance of the SWNTs, means that no signal processing is required to measure the low currents for DA oxidation at trace levels. DA detection in artificial cerebral fluid is also possible with a LOD of ∼50 pM in 50 μL (∼2.5 fmol).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac3023586DOI Listing

Publication Analysis

Top Keywords

ultrasensitive detection
4
detection dopamine
4
dopamine carbon
4
carbon nanotube
4
nanotube network
4
network microfluidic
4
microfluidic flow
4
flow electrode
4
electrode electrochemical
4
electrochemical measurement
4

Similar Publications

This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) detection can predict clinical risk in early-stage tumors. However, clinical applications are constrained by the sensitivity of clinically validated ctDNA detection approaches. NeXT Personal is a whole-genome-based, tumor-informed platform that has been analytically validated for ultrasensitive ctDNA detection at 1-3 ppm of ctDNA with 99.

View Article and Find Full Text PDF

Ultrasensitive photoelectrochemical detection of cancer markers based on heterojunctions constructed from BiO star-like flower nanoclusters and CdS hollow nanorods.

Talanta

January 2025

Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, Guangdong, 515063, P.R. China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, P.R. China. Electronic address:

CYFRA21-1 is a tumor marker for lung cancer, and its rapid and accurate detection can provide evidence for the early diagnosis of lung cancer. In this work, Bi-Fe turnbull blue analogues (Bi-Fe-TBA) were synthesized by the self-templating method. BiO-SFNs was prepared by simple oxidation in air using Bi-Fe-TBA as a template.

View Article and Find Full Text PDF

Electropositive Magnetic Fluorescent Nanoprobe-Mediated Immunochromatographic Assay for the Ultrasensitive and Simultaneous Detection of Bacteria.

Adv Sci (Weinh)

January 2025

Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.

Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.

View Article and Find Full Text PDF

DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!