By using dilution plate, fumigation extraction, and phospholipid fatty acid (PLFA) methods, this paper studied the quantities of soil microbial populations and the characteristics of soil microbial community structure in a Chinese fir (Cunninghamia lanceolata) plantation converted from an evergreen broadleaved forest. The results showed that, during the vegetation change from evergreen broadleaved forest to Chinese fir plantation, the microbial biomass carbon and the quantities of culturable bacteria and actinomyces were decreased. The total PLFAs, bacterial PLFAs, and fungi PLFAs in the woodland soil from Chinese fir plantation were decreased by 49.4%, 52.4%, 46.6%, simultaneously. And G+ and G- bacterial PLFAs in Chinese fir plantation were lower than in evergreen broadleaved forest. As compared with those in rhizosphere soil from Chinese fir plantation, the microbial biomass carbon and the quantities of culturable bacteria and actinomyces in bulk soil were decreased. The total PLFAs, bacterial PLFAs, and G+ and G- bacterial PLFAs in the rhizosphere soil were increased, while the ratio of fungal to bacterial PLFAs was lowered. The principal component analysis of the soil microbial community structure indicated that the first principal component (PC1) and the second principal component (PC2) together accounted for 78.2% of total variation of soil microbial community structure. This study showed there were some differences in the soil microbial community structure between evergreen broadleaved forest and Chinese fir plantation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil microbial
24
chinese fir
24
microbial community
20
community structure
20
fir plantation
20
bacterial plfas
20
evergreen broadleaved
16
broadleaved forest
16
plfas bacterial
12
principal component
12

Similar Publications

The Functional and Structural Succession of Mesic-Grassland Soil Microbiomes Beneath Decomposing Large Herbivore Carcasses.

Environ Microbiol

January 2025

Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.

Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!